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Abstract
The Advanced Persistent Threats (APT) are sophisticated and
well-resourced attacks targeting valuable assets. For APTs
both the attack and the defense require advanced planning
and strategies similar to military operations. The existing
cyber-security-awaremethodologies achieve valuable results
for regular cyber-threats, however they fail to adequately
address APTs. The armed forces around the world use the
Operational Design methodology to plan actionable strate-
gies for achieving their military objectives. However, this
conceptual methodology lacks the tools and the automation
needed to scale to the complexity of todays advanced persis-
tent cyber-attacks. In this paper we propose a tool-supported
Operational Design-based methodology for cyberspace mis-
sion planning. Our approach relies on a structural modeling
language, used by the French armed forces, that is extended
with behavioral specifications for modeling the operational
situation. The APT objectives are captured through temporal
logic specifications. The expert is assisted bymodel-checking
tools to perform the typical capacity-based operation design.
The approach is illustrated by studying a mission on a water
pumping station. After capturing its partial understanding
of the system, the attacker formalizes the mission objectives
and explores the design space defined around its five opera-
tional capabilities.

CCS Concepts: • Security and privacy → Formal security
models; Systems security.

Keywords: advanced persistent threat, cyber-security, model-
checking
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1 Introduction
Cyber-physical systems are the lifeblood of todays industrial,
military, and civilian infrastructures. As the degree of au-
tomation and connectivity increased, these systems became
vulnerable to cyber attacks. Moreover, armed forces around
the world recognise the importance of the cyberspace as an
operational environment to leverage in their missions. Ad-
vanced Persistent Threats (APT) emerged, in this context, as
sophisticated and well-resourced attacks targeting specific
valuable assets [4]. These attacks target long running sys-
tems, on which neither the attacker nor the defender have
complete knowledge. Thus, they require advanced planning,
strategies and coordination similar to military operations.
Operational Design [7] is a conceptual methodology

largely used in the military context to plan the mission strat-
egy (the operational approach - in military terminology).
From a systemic point of view, operational design can be
seen as similar to systems engineering, in a context where :
a) the operational environment, besides not being en-

tirely known/understood, can change drastically; b) the
solution (the operational approach) highly depends on the
available capabilities; c) the preferred solution focuses on
stealthy influences on the existing environment, instead of
the introduction of a new "system" in the environment.
Extensively used in traditional warfare, the Operational

Design methodology can be adapted to address cyber op-
erations planning [10], either offensive or defensive. More-
over, Operational Design is better suited for addressing APT
than the traditional risk-based systems design methodolo-
gies, which suppose a holistic point of view, and selectively
address high-risk threats only. The "Direction Générale de
l’Armement" (DGA) of the French ministry of armed forces
created a language and methodology for cyberspace mission
planning, named Pimca [15]. This language provides a rich
relation vocabulary, which enables abstract structural model-
ing of the operational environment to ease the attack surface
analysis. Despite being already used operationally, the Pimca
methodology lacks the tools and the automation needed to
scale to the complexity of todays advanced persistent cyber-
attacks.

https://doi.org/10.1145/3417990.3420044
https://doi.org/10.1145/3417990.3420044
https://doi.org/10.1145/3417990.3420044
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In this paper we propose a tool-supported Operational
Design-based methodology for cyberspace mission planning.
Our approach extends the Pimca framework with behavioral
specifications for modeling the operational environment dy-
namics. Using the dynamic Pimca (DyPimca) specification
as the current operational environment, we frame the Oper-
ational Design problem as a model-checking analysis. The
desired operational environment, capturing the mission ob-
jectives, are formalised as temporal logic specifications. The
design process itself becomes an iterative approach where
the planner alters the model, based on the available capabili-
ties, until the mission objectives are satisfied.
To illustrate our approach we consider a mission on a

water pumping station. The structural viewpoint is created
using the Pimca framework, the behavioral viewpoint is cap-
tured using a guarded-command language. Themission goals
are captured using Linear Temporal Logic (LTL). The itera-
tive nature of the process is emphasized by incrementally
considering the attacker capabilities.
Section 2 discusses APTs, overviews the Pimca formal-

ism, and introduces the Operational Design methodology.
Section 3 introduces the methodology and the formal frame-
work needed. Section 4 presents the case-study. Section 5
concludes this paper discussing some future research direc-
tions.

2 Background & Related Works
As cyber security threats on the industry grow increasingly
sophisticated, conventional security approaches tend to be-
come less relevant. In this paper, we propose a new point-of-
view on such threats. We argue that complex cyber threats
can be modeled as strategist envisioning sophisticated oper-
ations using military methodology.

2.1 Addressing APTs
Our context requires forward planning and strategy con-
ception. This relates to cyber security advanced persistent
threats. The US National Institute of Standards and Technol-
ogy [13] defines an Advanced Persistent Threat (APT) as :
“An adversary that possesses sophisticated levels of expertise
and significant resources which allow it to create opportuni-
ties to achieve its objectives by using multiple attack vectors
(e.g., cyber, physical, and deception). These objectives typ-
ically include establishing and extending footholds within
the information technology infrastructure of the targeted
organizations for purposes of exfiltrating information, un-
dermining or impeding critical aspects of a mission, program,
or organization; or positioning itself to carry out these objec-
tives in the future. The advanced persistent threat: (i) pursues
its objectives repeatedly over an extended period of time; (ii)
adapts to defenders’ efforts to resist it; and (iii) is determined
to maintain the level of interaction needed to execute its
objectives”.

Several instances of APTs in a wide range of industrial do-
mains have been reported [4, 5]. From the infamous Stuxnet
[11] to political espionage [12], these domains include but are
not limited to shipping, finance, energy, water. Thus APTs
pose a significant threat to any kind of industrial systems
and must be considered in security analysis.
As opposed to regular threats, APTs exhibits four distin-

guishing features identified by Chen et al.[4]: (i) specific
targets and clear objectives; (ii) highly organized and well-
resourced attackers; (iii) a long-term campaign with repeated
attempts; (iv) stealthy and evasive attack techniques. Chen
et al.[4] specify the cyber kill chain for typical ATP attacks:
(1) reconnaissance and weaponization; (2) delivery; (3) initial
intrusion; (4) command and control; (5) lateral movement;
(6) data exfiltration.

Due to the complexity of such threats, traditional defense
mechanisms are insufficient. Some security approaches have
been proposed to address APTs [4, 8, 20, 21], but all can
agree that there is no single solution to the problem. APTs
require multi-faceted responses. While many security ap-
proaches tackle specific phases of the cyber kill chain as
advised by Brewer [2], it appears that technical solutions
focus on the latter phases of the kill chain. Indeed the early
"reconnaissance and weaponization" stage differs in nature
with the others stages, it involves the attacker gathering data
and studying the system in order to formulate a strategy be-
fore proceeding with then more straight-forward phases. It
requires to better understand the APTs’ strategy as a whole.

Some approaches try to address the issue from this holistic
point of view. Rass et al. [14] use a game theory approach to
better understand the strategy. The approach may identify
specific weaknesses in the system architecture through a
game between attackers and defenders. However it requires
an extensive understanding of the targeted system to begin
with. Hutchins et al. [9] propose an intelligence-driven net-
work defense approach to understand the strategy. It exploits
the repeated attempts of intrusions of APTs to identify pat-
terns of behavior. However the approach is based on data
gathered and organized over time.

We argue that to defend against APT, taking the attacker’s
point of view can be valuable. It avoids issues such as com-
pleteness of the system model and requirements for previous
data. In this article, we showcase how our approach can
model the strategy development process of an APT.

2.2 Pimca
Pimca [15] is a language dedicated to high-level, structural
modeling of systems with cyber security concerns. It is in-
tended to be used as a tool for communication amongst
designers and experts, as well as to improve the definition of
requirements. Pimca meta-model ensures that instances pro-
vide valuable insights on the system to perform structural
cyber security analysis. This section introduces the main
concepts of the language.
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Figure 1. Pimca class diagram

Figure 1 presents an excerpt of Pimca’s meta-model. A
Pimca element is called a knowledge component and can be
of three types: 1) machinery, an active component follow-
ing a specific behavior. It directly affects other knowledge
component through its relations; 2) resource, a passive com-
ponent used to represent valuable assets that an attacker
may want to specifically target; 3) relation, an explicit link
between two knowledge components. It is always specialized
to represent the conceptual link between components, e.g. a
physical connection, a control relation, etc.... Each of them
offer various specializations that fit a cyber security context,
such as the checkpoint machinery and the related passport
resource. More examples are shown figure 1.

A Pimca model focuses on the structural properties of the
system under study. Its strong cyber security connotation,
especially regarding relations, allows for the definition of
generic analysis dedicated to this context. As such, a given
model’s attack surface can be highlighted from various points
of view depending on the possible adversaries (distant, in
situ, internal threat, etc...) [15].

Pimca does not support the capture of dynamic behaviors
and thus has limited use later in the system development
cycle. As it will be shown sections 3 and 4, the approach
presented in this paper complements Pimca and extends its
usefulness throughout conception.
However, it is important to note that while our contribu-

tion is built upon Pimca concepts, introduced this section,
if need be it could be bound to a different system modeling
language, such as SysML.

2.3 Operational Design
Operational Design is defined in the Joint Publication (JP 5-0),
Joint Operation Planning, as "the conception and construc-
tion of the framework that underpins a campaign or opera-
tion and its subsequent execution" [17]. When a commander
implements the strategy, Operational Design is the highest
level of implementation. It rests on operational art defined
as "cognitive approach by commanders and staffs–supported

Figure 2. Operational Design methodology, inspired by JP
5-0

by their skill, knowledge, experience, creativity, and judg-
ment–to develop strategies, campaigns, and operations to
organize and employ military forces by integrating ends,
ways, and means" (JP 5-0).

Operational Design methodology is detailed in several
military publications [3, 6, 7, 17, 19]. This high-level abstract
methodology aims at developing an operational approach,
i.e. a strategy to achieve a goal given an environment and
obstacles. It revolves around three continuous concurrent
and recursive processes presented in Figure 2.

• Frame the Current Operational Environment (COE).
• Frame the problem.
• Frame the Desired Operational Environment (DOE).

Current operational environment framing: This part is
detailed in the Joint Intelligence Preparation of the Opera-
tional Environment (JIPOE) process [18]. It revolves around
the identification and characterization of the operational
area. This includes the previously acquired intelligence, in-
formation, hypothesis, limits and gaps in knowledge. Fur-
thermore the commander fixes the level of granularity of
the approach depending on the feasibility and time avail-
able. Finally they may submit requests for information to
support further analysis. The mission objective is similarly
analyzed and captured by framing the desired operational
environment.
Problem framing: This part revolves around understand-
ing and reviewing tendencies and potential actions of all
relevant actors in the environment. This helps finding the
root causes that prevents the Operational Environment (OE)
from reaching the desired state. Problem framing requires
several aspects of understanding: determine the strategic
context and systemic nature of the problem(s), synthesize
strategic guidance, identify strategic trends, identify gaps
in knowledge and assumptions about the problem(s) and
identify the operational problem(s) [16].
Operational approach: This part describes how the COE
should be changed to the desired end state. It describes the
mission task-by-task: who, what, when, where, and why.
[16] The Operational Approach is heavily dependent on the
Operational Design framework. Thus the approach can take
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Figure 3. Approach Overview.

many forms from graphical to textual but clarity remains of
the utmost importance.
Operational Design and military planning as a whole is

relevant to consider in the context of APTs. Given the fact
that such threats are well-organised and resourceful, APTs
have the means and expertise to design complex strategy to
reach their targets. In other words, APTs methodology to
attack is akin to operational design methodology. Therefore,
Operational Design can offer a new significant perspective
in security modeling in the context of APTs.

The Pimca language was created by the DGA to enable the
use of the Operational Design methodology in the context of
cyberspace operations planning (both defense and offense).
However, currently the Pimca formalism lacks behavioral
specifications, which limits its use. This paper solves this
problem. Furthermore, the methodology proposed here eases
the operational design process by automating goal satisfac-
tion through model-checking.

3 Operational Design for Cyberspace
Missing Planning

This section introduces an Operational Design methodol-
ogy for cyberspace operations planning, which uses model-
checking for checking if the influences integrated in the COE
satisfy the DOE. This approach is based on a behavioral ex-
tension of the structural Pimca formalism, which is described
in section 3.2.

3.1 Operational Design Methodology
The purpose of our methodology is to offer the cyberspace
operation designer a high-level environment through which
they can abstractly capture the mission characteristics, de-
sign the needed operational influences on the current envi-
ronment, and quickly check if the operational opportunities
available suffice to achieve the desired effects in the OE.

Figure 3 overviews our Operational Design methodology.
The starting point of the Operational Design process is the
reception of a high-level mission statement, which should
be "transformed" into an realistic actionable strategy within
the bound of the available military capabilities. The first
steps proposed by our methodology match standard Opera-
tional Design practice. The mission statement is analyzed to
identify three different aspects of the mission: a) the target,
abstractly representing the perimeter of the mission; b) the
objective identification, representing the goal of the mission;
c) the problem, representing the elements which prohibits
the target from achieving the goal. Trivially, the process will
stop if, after this preliminary analysis, the designer concludes
that the COE already possess the needed characteristics for
achieving the objectives.
Once the target is identified, we capture the structural

and behavioral viewpoints of the COE (left box in Figure 3).
The structural viewpoint correspond to the interacting ac-
tors in the OE, which are in the perimeter of the identified
target. Standard Operational Design methodologies tend to
rely exclusively on this structural viewpoint. In our case, the
behavioral viewpoint complements the understanding of the
actors interactions by abstractly specifying their behavior
as state-machines. For framing the OE the designer relies on
the available intelligence reports on the target. These reports
can be incomplete, contradictory, or even wrong. The use of
a tool supported modeling language for capturing the target
environment eases the designers work, helping her to iden-
tify potential inconsistencies. Through model manipulation
tools, such as simulation, debug, test, the designer along with
her colleagues can better share their understanding of the
mission target.
To formalize the DOE (right box in Figure 3), which cap-

tures the mission goals, we propose using temporal logic
specifications. Similar to the target modeling, temporal logic
specifications can serve as a golden model, a high-level un-
derstanding of the behavior of the DOE. Moreover, through
different refinement mappings [1] (refinement of the propo-
sitional variables), the temporal specifications can be bound
to different target operational environment models. In this
paper we use LTL for specifying the mission goals.
The problem is framed as a set of tensions between the

COE and the DOE ("Frame the problem" in Figure 3). The
designer knowledge of the available capabilities and the
experience guide her towards the identifications of some op-
portunities, which can be exploited to push the COE towards
the mission goals. In our proposal, the problem framing pro-
cess is complemented with counter-examples obtained by
model-checking the COE against the DOE specifications.
These counter-examples objectively capture the behaviors
which are detrimental to the mission objective.

Our methodology identifies three important processes
central to the operational design (middle gray box in Fig-
ure 3): 1) Objective satisfaction, represents the process of
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checking if the current operational environment satisfies
the mission goals. If the desired operational environment
is not satisfied, the counter-example produces feeds the
problem framing process. In our case this process is auto-
mated through model-checking, which produces behavioral
counter-example traces, describing the sequence of steps
that lead to failure. On the other hand, if the objective is
satisfied, the plan concretization process can be started. 2)
The influence elaboration task uses the opportunities identi-
fied by the designer and the counter-examples produced by
model-checking to devise the operations to be applied on the
COE to achieve the mission goals. In our case, the influence
elaboration process acts on the behavioral specification of
the target by adding, removing or modifying its behavior as
needed. 3) The plan concretization process is enabled when
the mission objectives are satisfied by the "influenced" COE.
The purpose of this process is to map the influences, ap-
plied on the COE, to the concrete actions of the operational
approach.

3.2 Behavioral Modeling And Verification
This section introduces the underlying formal framework
that supports the methodology described section 3.1. A clas-
sic guarded-command (GC) meta-model is introduced as the
basic building blocks to capture behaviors. Then, model ele-
ments are linked to Pimca nodes as an anchor for a behavioral
model to its structural counterpart.

A guarded-commandsmodel is a tuple (V,A, S) where
V is a set of variables, A is a set of guarded-commands and
S is a set of synchronisation channels. In the following, the
set of possible valuations over V is denoted 𝑣𝑎𝑙V. A guarded-
command is a tuple (𝑢 : B, 𝑠 : S ∪ {none}, 𝑔 : 𝑣𝑎𝑙V →
B, 𝑐 : 𝑣𝑎𝑙V → 𝑣𝑎𝑙V) where 𝑢 is a boolean denoting if the rule
is urgent or not, 𝑠 denotes its synchronisation channel (or
lack thereof), 𝑔 denotes its guard (boolean expression) and 𝑐
denotes its command (statement). A synchronisation channel
is a tuple (𝑑 : {in, out}, 𝑖𝑑) where 𝑑 denotes its direction and
𝑖𝑑 is an unique identifier.

Illustrations can be found section 4. The concrete syntax
of a guard-command used then is as follows:

GC_name :
urgent ?
( channe l ( ? | ! ) ) ?
[ guard ] ? /
( command ; ) ∗

While the guards (boolean expressions) and commands
then illustrated are straight-forward, the following focuses
on clarifying urgent and synchronisation semantics.
Intuitively, if conditions are met for any urgent guarded-

command in A, all non-urgent ones are not available for
execution. In the following, the termℎ𝑎𝑠𝑈𝑟𝑔𝑒𝑛𝑡A : 𝑣𝑎𝑙V → B
is introduced to denotes such a case. Formally, ∀ 𝜌 ∈ 𝑣𝑎𝑙V:

ℎ𝑎𝑠𝑈𝑟𝑔𝑒𝑛𝑡A (𝜌) ⇔
∃(𝑢, none, 𝑔, ) ∈ A, 𝑢 ∧ 𝑔(𝜌)

∨ ∃(𝑢1, (out, 𝑖𝑑), 𝑔1, ), (𝑢2, (in, 𝑖𝑑), 𝑔2, ) ∈ A,
(𝑢1 ∨ 𝑢2) ∧ 𝑔1 (𝜌) ∧ 𝑔2 (𝜌)

The semantics of synchronised and urgent guarded-
commands of a given (V,A, S) model is presented Figure 4
as inference rules. ⟨A, 𝜌1⟩ → 𝜌2 denotes an execution
step where 𝜌1 and 𝜌2 are the variables valuations prior
and post execution. Urgent: Rules 𝑠𝑖𝑛𝑔𝑙𝑒𝑢 and 𝑠𝑦𝑛𝑐𝑢 have
priority over rules 𝑠𝑖𝑛𝑔𝑙𝑒 and 𝑠𝑦𝑛𝑐 (the later two require
¬ℎ𝑎𝑠𝑈𝑟𝑔𝑒𝑛𝑡A ( )). Single: Rules 𝑠𝑖𝑛𝑔𝑙𝑒 and 𝑠𝑖𝑛𝑔𝑙𝑒𝑢 apply
to guarded-commands with no synchronisation channel
(none). Such rules are executed alone. Synchronisation:
Rules 𝑠𝑦𝑛𝑐 and 𝑠𝑦𝑛𝑐𝑢 apply to pairs of guarded-commands
with a common synchronisation channel id but different
directions (i.e. (out, 𝑖𝑑) and (in, 𝑖𝑑)). It is important to note
that 1. such rules can only be executed if both guards are
satisfied (𝑔1 (𝜌1) ∧ 𝑔2 (𝜌1)); 2. the channel outgoing com-
mand is executed before the channel incoming command
(𝑐2 (𝑐1 (𝜌1)) = 𝜌2); 3. 𝑔2 (𝑐1 (𝜌1)) is not evaluated, in other
words guard 𝑔2 is not required to still hold after command 𝑐1
execution; 4. a synchronisation is considered urgent if any
of the two guarded-commands is (𝑢1 ∨ 𝑢2).

Bindings to Pimca nodes and relations. The guarded-
commands meta-model introduced above is meant to capture
behaviors for a given structural Pimca specification. As such,
variables and guarded-commands are bound to nodes from
the structural model (machineries). Variables referenced by a
rule (guard or command) do not have to be bound to the same
Pimca node, but if bound to a different node than the rule
then a Pimca relation is expected to exist between the two
nodes. Similarly, pairs of synchronised guarded-commands
are expected to be bound to different Pimca nodes linked by
a Pimca relation.
In other words, Pimca nodes act as scopes for behavioral

elements, global declarations are not allowed and Pimca
relations act as dependencies between those scopes.
Model-checking. This paper comes with its own model

and language to capture the system under study. Several ap-
proaches can run amodel-checking analysis on such an entry
point. Among them, the OBP model-checker allows and
encourages the definition of a language plugin dedicated to
the user needs. Such a plugin is, arguably, easier to write and
maintain than a compiler (model transformation) to another
tool input language.
An OBP plugin requires the following functionalities:

1. load a model; 2. get the set of initial states; 3. get the set
of outgoing transitions from a given source state; 4. get
the set of target states from a given source state and a tran-
sition; 5. evaluate atomic propositions over a transition,
its source and target states. This API is sufficient to conduct
the analysis. It should be noted, however, that some care
should be given to how states and transitions are displayed.
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𝑠𝑖𝑛𝑔𝑙𝑒𝑢 :

∀(𝑢, none, 𝑔, 𝑐) ∈ A,∀ 𝜌1, 𝜌2 ∈ 𝑣𝑎𝑙V
𝑢 ∧ 𝑔(𝜌1) ∧ 𝑐 (𝜌1) = 𝜌2

⟨A, 𝜌1⟩ → 𝜌2

𝑠𝑖𝑛𝑔𝑙𝑒 :

∀(𝑢, none, 𝑔, 𝑐) ∈ A,∀ 𝜌1, 𝜌2 ∈ 𝑣𝑎𝑙V
¬ℎ𝑎𝑠𝑈𝑟𝑔𝑒𝑛𝑡A (𝜌1) ∧ ¬𝑢 ∧ 𝑔(𝜌1) ∧ 𝑐 (𝜌1) = 𝜌2

⟨A, 𝜌1⟩ → 𝜌2

𝑠𝑦𝑛𝑐𝑢 :

∀(𝑢1, (out, 𝑖𝑑), 𝑔1, 𝑐1), (𝑢2, (in, 𝑖𝑑), 𝑔2, 𝑐2) ∈ A,∀ 𝜌1, 𝜌2 ∈ 𝑣𝑎𝑙V
(𝑢1 ∨ 𝑢2) ∧ 𝑔1 (𝜌1) ∧ 𝑔2 (𝜌1) ∧ 𝑐2 (𝑐1 (𝜌1)) = 𝜌2

⟨A, 𝜌1⟩ → 𝜌2

𝑠𝑦𝑛𝑐 :

∀(𝑢1, (out, 𝑖𝑑), 𝑔1, 𝑐1), (𝑢2, (in, 𝑖𝑑), 𝑔2, 𝑐2) ∈ A,∀ 𝜌1, 𝜌2 ∈ 𝑣𝑎𝑙V
¬ℎ𝑎𝑠𝑈𝑟𝑔𝑒𝑛𝑡A (𝜌1) ∧ ¬(𝑢1 ∨ 𝑢2) ∧ 𝑔1 (𝜌1) ∧ 𝑔2 (𝜌1) ∧ 𝑐2 (𝑐1 (𝜌1)) = 𝜌2

⟨A, 𝜌1⟩ → 𝜌2

Figure 4. Synchronised and urgent guarded-commands semantics

Although optional, this step provides much needed feedback
to the users.

In the case of this section guarded-commands model, the
plugin implementation can found along the provided case-
study source code linked section 4.

As for properties, OBP usesGeneric Property Specifica-
tion Language1 (GPSL). It provides boolean and temporal
operators (LTL, Buchi automata) to combine atomic proposi-
tions into higher level constructs. Those atomic propositions
are to be evaluated by the language plugin. Their expressive-
ness and syntax can thus easily be tuned as needed.

4 Illustration: Water Pumping Station
In this section, we will showcase our approach on a case
study. Due to the sensitivity of real-life military use cases,
we chose to illustrate our methodology on a hypothetical
realistic case of a water pumping station targeted by an
Advanced Persistent Threat.

The complete case study is available at https://github.com/
Lawyne/dypimca-secure-mde-2020 along with the experi-
mental setup.

4.1 Initial Operational Environment Framing
The APT has a rough understanding of the targeted system.
The system is a water pumping Supervisory Control And
Data Acquisition (SCADA) plant that possess several wa-
ter pumping stations. Previous intelligence operations have
shown that the system uses a Programmable Logic Con-
troller (PLC) to regulate the level of a water tank. The PLC
controls a sensor to check the water level at all times and
two actuators a pump and an inflow valve. In addition the
outflow of the water tank is conditioned by a manual valve

1The full description of the GPSL language is available at http://www.obpcdl.
org/properties/2019/05/09/buchi/

Figure 5. Supposed water pumping station structure

that is actionable by an on-site operator. The PLC follows
a command given by the SCADA central through the plant
network. To the APT’s understanding, the command raises
the water level by switching the pump off and opening the
inflow valve. It lowers the water level by switching the pump
on and closing the inflow valve. The command must also
stipulate that the PLC regularly relays the sensor’s measures
to the SCADA central.

Using the knowledge of our hypothetical APT, we model
the system according to our methodology. Figure 5 show-
cases the Pimca model of the system with a focus on a single

https://github.com/Lawyne/dypimca-secure-mde-2020
https://github.com/Lawyne/dypimca-secure-mde-2020
http://www.obpcdl.org/properties/2019/05/09/buchi/
http://www.obpcdl.org/properties/2019/05/09/buchi/


Operational Design for Advanced Persistent Threats MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

water tank. Every element previously stipulated is repre-
sented as either a machinery (SCADA, network, PLC, inflow
valve, sensor, pump, water tank, manual valve and operator)
or a resource (command, water).
These elements are linked through the rich relations of

Pimca language [15]. Physical connections are represented
by exchange relations. These are represented by unlabelled
bidirectional relations in Figure 5. More complex and richer
relations are labelled. For instance, the PLC checks the wa-
ter level of the Tank through the sensor. This is captured
using a specific relation in Pimca shown in Figure 5. In our
case, the objectives of the APT are: (i) overflowing a water
tank; (ii) remaining undetected. Following the Operational
Design methodology, the APT develops the framework for
the desired operational environment.

4.2 Sub-Objective 1: Overflow the Water Tank
Mission statement: To overflow the water tank, the APT
targets the physical components of the system, namely the
water tank, the inflow valve, the pump and the manual valve.
To the APT’s understanding, the inflow valve is the only
element directly responsible for raising the water level. Thus
in the desired operational environment, the inflow valve
must be switched on. Conversely, the pump and the manual
valve are responsible for lowering the water level, so at least
one among them must be closed.
Problem framing: Several elements can hinder the APT’s
attempts: the PLC that directly controls the inflow valve and
the pump; the sensor that relays the water level to the PLC
so that it can make informed decision; the operator who can
open the manual valve and allow the water to flow out of
the tank.
Current operational environment refinement: This
analysis allows for a behavioral refinement of the current
operational environment framework, i.e. guarded-command
modeling. The APT binds behavioral elements or execution
units to the different machineries identified in the prob-
lem framing process. These execution units are written us-
ing the guarded command semantic previously defined. Ta-
ble 1 shows the different execution units and their respec-
tive guarded-commands representing the current behavioral
model pertaining to the mission.

For instance, the goal of the PLC is to maintain the water
level in the tank between a predefined range of a low thresh-
old and a high threshold. To do so, it controls the inflow
valve and the pump through "open" and "close" messages
allowing water to flow in or out the tank. The sensor notifies
the PLC of the new water level in the tank triggering the
update guarded-command. This guarded-command forces
the PLC to make an urgent decision based on the current
water level. The decision has three different cases:

• If the water level if above the acceptable upper thresh-
old, the PLC commands the inflow valve to close. It

also switches the pump on so that the water level can
lower overall.

• If the water level if below the acceptable lower thresh-
old, the PLC commands the inflow valve to open. It
also switches the pump off so that the water level can
raise overall.

• If the water level is within the accepted range, the
PLC does not command any particular behavior in the
actuators.

The entirety of the guarded-command model can be found
on our open repository 2. For the purpose of this paper and
its readability we use the syntax as introduced section 3.2.

Formally the PLC GC are as follows:

update :
upda t eLeve l ? /
p l cWa te rLeve l : = s en so rWate rLeve l ;
T r i g g e rDe c i s i o n : = t r u e ;

r e g u l a r :
urgent
[ T r i g g e rDe c i s i o n ∧
p l cWa te rLeve l < p l cUppe rThre sho ld ∧
p l cWa te rLeve l > p l cLowerThresho ld ] /
T r i g g e rDe c i s i o n : = f a l s e ;

h ighThres :
urgent
[ T r i g g e rDe c i s i o n ∧
p l cWa te rLeve l ≥ p l cUpperThre sho ld ] /
T r i g g e rDe c i s i o n : = f a l s e ;
T r i g g e rC l o s eVa l v e : = t r u e ;
TriggerOpenPump := t r u e ;

lowThres :
urgent
[ T r i g g e rDe c i s i o n ∧
p l cWa te rLeve l ≤ p l cLowerThresho ld ] /
T r i g g e rDe c i s i o n : = f a l s e ;
Tr iggerOpenVa lve : = t r u e ;
Tr iggerClosePump := t r u e ;

v a l v eO f f :
urgent
commandValveOff !
[ T r i g g e rC l o s eVa l v e ] /
T r i g g e rC l o s eVa l v e : = f a l s e ;

valveOn :
urgent
commandValveOn !

2https://github.com/Lawyne/dypimca-secure-mde-2020

https://github.com/Lawyne/dypimca-secure-mde-2020
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[ Tr iggerOpenVa lve ] /
Tr iggerOpenVa lve : = f a l s e ;

pumpOff :
urgent
commandPumpOff !
[ Tr iggerClosePump ] /
Tr iggerClosePump := f a l s e ;

pumpOn :
urgent
commandPumpOn !
[ TriggerOpenPump ] /
TriggerOpenPump := f a l s e ;

The sensor follows a simpler behavior. Once the water
tank changes level, it notifies the sensor through themeasure
channel. This triggers a update in the sensor which then
propagates to the PLC. Formally the sensor GC are as follows:

update :
measure ? /
s en so rWate rLeve l : = va l u e ;
T r i g g e r S en s o r : = t r u e ;

r e f r e shPLC :
urgent
upda t eLeve l !
[ T r i g g e r S en s o r ] /
T r i g g e r S en s o r : = f a l s e ;

The water tank, inflow valve, manual valve and pump are
also bound to an execution unit to model their respective
behaviors as shown in Table 1.
Intuitively the inflow valve can either be open or closed.

When the valve is open, the flowOut GC can trigger and
increase the water level in the tank. The open and close GC
are responses to commands from the PLC.

Similarly the pump can either be open or closed through
commands from the PLC. When the pump is open, the flowIn
GC can trigger and decrease the water level in the tank,
should the manual valve allow it.
The manual valve can be opened or closed by an human

operator. Intuitively it is the an intermediary node between
the pump and the water tank. As such it transmits the flow
of water between these two elements. If the pump trigger its
flowIn GC, the receiving GC in the manual valve is flowOut.
The flowOut GC then trigger the urgent flowIn GC which
decrease the water level in the tank.
Finally the water tank handles the evolution of its level.

It has a receiving flowIn GC responding to the inflow valve
and a receiving flowOut GC responding to the manual valve.
Both GC change the water level and therefore they trigger
the refeshSens GC which notifies the sensor of the new water
level. Furthermore the APT adds two urgent GCs to measure

specific states of the water tank. The overflow urgently trig-
gers when the water level is above the tank capacity and the
underflow urgently triggers when the tank is empty.

Note that the network and the SCADA central are bound to
empty execution units. This symbolizes the fact that the APT
did not frame these machineries as problems. Therefore their
behaviors are not relevant to the current sub-objective. From
this behavioral model, the APT is able to run a simulation
of the targeted system and they can observe the water level
in the tank raising and lowering periodically between two
thresholds.
Desired operational environment framing: The APT’s
desired operational environment has an overflowing water
tank. This can be expressed in LTL in the following form:
<> |𝑤𝑎𝑡𝑒𝑟𝑂𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤 | where 𝑤𝑎𝑡𝑒𝑟𝑂𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤 is a boolean
variable initialized at false and becoming true whenever the
water level reaches higher than 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐻𝐼𝐺𝐻 . The water
tank’s overflow GC is the only GC able to change this value.
Identified opportunities: Judging from the identified ob-
stacles, the APT’s opportunities are to force the inflow valve
open, to bribe the operator into closing the manual valve or
to block the pump flow. The PLC is deemed too risky to be
tempered with given its inherent degree of sophistication.
These opportunities are captured through guarded-

commands. Specifically, on the inflow valve, the APT gen-
erates a forceOpen GC in response to the APT’s guarded-
command to attack. Once forceOpen is triggered the valve
can no longer be closed. Thus the APT adds a condition to
the guard of the close GC preventing it from being triggered
if forceOpen already has.
On the manual valve, the APT adds a condition to the

guard of the close GC allowing it from being triggered by the
bribed operator.

On the pump, similarly to the inflow valve, the APT gener-
ates a block GC in response to the APT’s guarded-command
to attack. Once block is triggered the pump can no longer
be switched on by the PLC. To implement this aspect, the
APT models two switchOn GCs: the regular response to the
PLC command (switchOn1) and an altered response to the
PLC command where the pump does not open (switchOn2).
The guard of switchOn1 is initially true and becomes false
when block is triggered. Conversely the guard of switchOn2
is initially false and becomes true when block is triggered.
Splitting the switchOn GC in two is necessary because it is
a receiving GC responding to the PLC command. The com-
mand must have a valid GC response to be triggered in order
to ensure that the model works correctly.
The Operational Approach to meet the sub-objective 1

is developed via model-checking. The executable approach
is formally verified using the model-checker OBP2. Table 2
presents our results. Each column represents a combination
of opportunities used by the APT and their success or failure
to achieve a particular sub-objective.
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Water Tank PLC Inflow Valve Manual Valve Pump Sensor Network SCADA
flowIn update flowOut flowIn flowIn update
flowOut regular open flowOut switchOn refreshPLC
refreshSens highThres close open switchOff
overflow lowThres close
underflow valveOn

valveOff
pumpOn
pumpOff

Table 1. Current execution units and their guard-commands in the operational environment model to overflow the water tank

Solely for the sub-objective 1, the model-checker shows
that at least two opportunities have to be exploited to achieve
the overflow. Forcing the inflow valve open and either closing
the manual valve or blocking the pump are required. Based
on this results, the APT can formulate a course-of-action to
succeed in its operations. However, the APT has an other
sub-objective to complete their mission.

4.3 Sub-Objective 2: Remain Undetected
The APT refines its previous operational design to take the
second sub-objective into account.
Desired operational environment refinement: To re-
main undetected while achieving the overflow, the SCADA
central must not be aware of the current state of the water
level. Therefore, at least one element in the communication
chain Sensor-PLC-Network-SCADA must be tempered with.

The APT’s desired operational environment is constrained
by a new LTL property: []!|𝑠𝑐𝑎𝑑𝑎𝐴𝑙𝑒𝑟𝑡 | where scadaAlert
is a boolean varuable tied to the SCADA central initial-
ized at false and becoming true whenever a dangerous
level is reported by the PLC for too long. The mission
overall is constrained by the following LTL property: <>
|𝑤𝑎𝑡𝑒𝑟𝑂𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤 | ∧ []!|𝑠𝑐𝑎𝑑𝑎𝐴𝑙𝑒𝑟𝑡 |
Problem identification: Several elements are involved in
the communication chain that can trigger an alert at the
SCADA central, namely the Sensor, the PLC, the Network
and the SCADA.
Current operational environment refinement:We take
the APT’s second objective into account by refining our
previous operational environment model. Table 3 details the
guarded-commands added to the model.

In principle, the PLC now notifies the SCADA through the
network whenever it updates the water level. If regular is
triggered, the PLC sends the regularSig GC into the network.
Otherwise if either highThres or lowThres are triggered, the
PLC sends a dangerSig into the network.
The network acts as an intermediary node between the

PLC and the SCADA. Whenever the PLC sends a signal
through a GC, the network receives it with the receive GC.
It then trigger the urgent send GC to transmit the signal to
the SCADA Central.

The SCADA is the final receiver in the model. Whenever
the SCADA receives two dangerous signals (dangerLvl) in a
row, it raises an alert through the urgent alert GC, otherwise
it goes back to its normal state whenever it receives a regular
signal (regularLvl).
Identified opportunities: According to previous reports,
the PLC and the SCADA central are too risky to be tempered
with. Thus the APT only has two opportunities to achieve
their second sub-objective: jamming the network or disabling
the sensor. The opportunities are captured through guarded-
commands.

The APT injects a jam GC in the network that is triggered
by an attack. Whenever the network is jammed, the send
GC can not resolve. Thus the APT adds a condition to the
guard of send so that it can only trigger when jam has yet to
trigger.

Similarly to the previous opportunities, the APT injects a
disable GC in the sensor, preventing the legitimate refresh-
PLC GC from triggering once disable has been done. Just like
with the attack on the manual valve, the sensor requires re-
freshPLC to be guarded by an additional condition. Formally
the new sensor’s behavior is described as follows:

update :
measure ? /
wa t e rLeve l : = va l u e ;
t r i g g e r S e n s o r : = t r u e ;

r e f r e shPLC :
urgent
upda t eLeve l !
[ t r i g g e r S e n s o r ∧ ! d i s a b l e d S e n s o r ] /
t r i g g e r S e n s o r : = f a l s e ;

d i s a b l e :
c o r r up t S en s o r ? /
d i s a b l e d S e n s o r : = t r u e ;

The Operational Approach to meet the sub-objective 2
is developed via model-checking. Table 2 details the execu-
tion results of the model simulation and verification. Several
combinations can achieve both sub-objectives, for example
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Force (open) inflow valve • • • • • •
Close manual valve • • • •
Block pump • • • •
Jam network • • • • •
Disable sensor •
Sub-objective 1 X X X X O O X X X O O O
Sub-objective 2 X X X X X X O O O O O O

Table 2. Model-checking of the water pumping station (O: success, X: failure)

PLC Network SCADA
regularSig receive regularLvl
dangerSig send dangerLvl

alert

Table 3. Addition to the operational environment to remain
undetected

forcing the inflow valve open, closing the manual valve and
jamming the network can result in a successful mission. As
expected, tempering with the network or the sensor achieve
the sub-objective 2. However, jamming the network does not
affect the sub-objective 1, thus previously exhibited oppor-
tunities are still required to achieve both objectives. On the
contrary, one particular execution case is when the APT only
disables the sensor. In doing so, both sub-objectives can be
achieved. Using our methodology, the APT identifies a single
opportunity required to achieve the mission objectives. From
this high-level system and opportunities modeling, the APT
can formulate the best course-of-action.

4.4 Discussions
This case study showcases the proposed approach on a hy-
pothetical water pumping station targeted by an APT. Fol-
lowing the Operational Methodology, the APT devises their
strategy to stealthily overflow the water tank of the system.
First they frame their current operational environment using
previously gathered intelligence. In doing so, the APT builds
the framework to plan for the operational approach from the
mission statement. We showcase how the iterative processes
interact with each other to further the APT reasoning.
Our approach revolves around the point of view of an

opportunity-driven APT. An abstract model of the system
is refined in iterative loops to capture those opportunities.
Compared to the related works in high-level APT model-
ing [9, 14], we argue that our approach presents several
benefits. As opposed to a hypothetical attacker who has an
extensive understanding of the targeted systems structure
and behavior, we propose an abstract system model that
represents the partial knowledge of the attacker. As such
the approach avoids exhaustivity and completeness issues
raised by other works. In addition our approach is also low-
investment in that extensive knowledge of the system or

security data previously gathered are not required to pro-
ceed. Moreover military planning offers a insightful new
perspective on APT strategy as a whole.
While our approach models an APT strategy planning,

the approach does not prescribe any defensive solution. It
highlights scenarios of success for the APT and consequently
scenarios of failure for the system. As such, it serves as a di-
agnosis tool and requires linking results to more traditional
security techniques. It also relies on the cyber security ex-
pert’s knowledge and judgment for the quality of the analysis.
We are currently working on applying the proposed method-
ology and tools to other case studies (a cruise-control and a
distant car rental systems among others). This experience
provides valuable insight to better formalize the method-
ological steps and address the aforementioned issues. In
particular, guidelines and patterns for opportunity modeling
are emerging as ground work for future contributions.

5 Conclusion
This paper presented a methodology for cyberspace opera-
tions planning in the context of APTs. Inspired by the mili-
tary Operational Design methodology, our contribution pro-
poses a model-based methodology enabling incremental de-
sign of the operational approach. The core of the approach
is based on a formal model of the current operational en-
vironment and of the mission objectives. This formaliza-
tion enables the automation of the goal satisfaction, through
model-checking. If the mission goals are not reached, the
generated counter-examples provides valuable insight to the
designer for the next iteration. The approach was illustrated
on a mission on a water pumping station showing that it
can be valuable not only for knowledge sharing between ex-
perts, but also for systemic exploration of the design-space.
Currently, we are working on designing a user study to both
refine and better characterize the adequacy of our methodol-
ogy to the needs of the French armed forces. In the future we
plan to formalize the problem framing and the influence elab-
oration tasks to clearly isolate the needed "influences" from
the initial formalization of the operational environment.
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