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Context and Problems
● To execute, verify and validate embedded system software, multiple models 

of their environment are required:
○ Abstract environment models for V&V activities

■ To close the system model execution with a superset of all possible scenarios
○ Concrete environment models for actual execution on an embedded target

■ To interact with the physical environment through sensors and actuators of the target

● Need to connect the system model to different environment models in a 
modular way

● Two main research challenges remain:
○ The environment model is often target-specific and tightly coupled with the system model
○ Transformations used for model deployment (e.g., code generation) are usually unproven, 

which makes difficult to ensure that formal properties verified during the design phase are still 
preserved at runtime
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Modular UML Model
● A modular UML model is divided into 

several files (one UML package per file):
○ System

■ The System component
■ All UML objects of the system

○ Environment
■ The Environment component
■ All UML objects of the environment

○ DAL (Device Abstraction Layer)
■ Interfaces and signals definition

→ The system can be defined in a generic way
→ The environment can be easily exchanged

○ Main
■ The Main composite structure



Modular UML Model - Stable XMI IDs
● Need to make references to external elements

○ Use XMI identifiers (IDs) to identify each element but two problems
■ Not human-readable (e.g.,  “_7wRIABydEduyofBvg4RL2w”)
■ Need to be keep up-to-date between files

● Our solution - Stable XMI IDs
○ Use fully qualified names as XMI IDs (e.g., “DAL.buttonPressed”)
○ Can be shared between several files → “stable”
○ Use the ElementImport mechanism of UML to import an external element in a file
○ The same qualified name in several files refers to the same element
○ OCL validation rules are used to ensure consistency

● Benefit: It becomes possible to only change the environment component to 
use a different one assuming that this component has the same name and the 
same ports



Link environment model with Hardware
● Three more UML packages (3 more files)

○ DIL (Device Implementation Layer)
■ UML classes that can be seen as kind of 

generic devices (e.g., buttons, leds, 
timers)

○ Low-Layer Interface
■ Functions (in C language) used to 

activate, configure and run hardware 
peripherals

○ Target
■ All available peripherals of the board

○ Environment
■ Instantiate DIL devices with Target 

parameters (actual hardware peripherals)



Deployment with EMI
● Embedded Model Interpreter
● All UML elements are serialized 

in C language
○ Keep relation with stable XMI IDs
○ Use EcoreUtil.resolve() method for 

resolving references to external 
elements

● Use the same pair (Model + 
Semantics) for V&V activities 
and actual execution

○ Preserve the correctness of 
software properties at runtime



Experiments
● Applied on models of differents embedded systems

○ The controller of a level crossing system
○ The user interface of a cruise control system

● Use the OBP2 model-checker to apply V&V activities:
○ Interactive simulation
○ Deadlock detection
○ LTL model-checking

● Use an STM32 board for embedded execution

● Benefits
○ Provide modularity at model-level and avoid duplication of the system component
○ No impact on results of V&V activities

● Complexity of designing a modular UML model
○ Defining a modular UML model (or modularizing an existing UML model) requires more UML 

elements (ports, interfaces)



Conclusion
● System model defined in a generic way (unique system model) 

○ Platform-independent 
○ Decoupled from the environment
○ Deployed as it stands for model verification and runtime execution

● Different environment models can be easily linked to the system model
○ To close the system execution during V&V activities
○ To interact with the physical environment for embedded execution

● Model deployment with EMI (unique language semantic implementation) 
helps ensure the preservation of verified properties at runtime 

● Further improvements
○ Better model the environment (e.g., to have multiple abstraction layers like in an OS)
○ Apply the approach to industrial case studies



Architecture 
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