
Modular Deployment of UML Models
for V&V Activities and Embedded Execution

Valentin Besnard
ERIS, ESEO-TECH
Angers, France

valentin.besnard@eseo.fr

Frédéric Jouault
ERIS, ESEO-TECH
Angers, France

frederic.jouault@eseo.fr

Matthias Brun
ERIS, ESEO-TECH
Angers, France

matthias.brun@eseo.fr

Ciprian Teodorov
Lab-STICC UMR CNRS 6285,

ENSTA Bretagne
Brest, France

ciprian.teodorov@ensta-bretagne.fr

Philippe Dhaussy
Lab-STICC UMR CNRS 6285,

ENSTA Bretagne
Brest, France

philippe.dhaussy@ensta-bretagne.fr

Jérôme Delatour
ERIS, ESEO-TECH
Angers, France

jerome.delatour@eseo.fr

ABSTRACT
To design embedded systems, multiple models of their environ-
ments are typically required for different purposes such as sim-
ulation, verification, and actual execution. Some of these models
abstract the actual physical environment to facilitate Verification
and Validation (V&V) activities. Others capture the connection to
hardware peripherals, necessary to deploy the systems on actual
embedded boards. However, mapping a system to different environ-
ment models for different purposes remains a complex task for two
main reasons. First, the environment is often tightly coupled with
the system, and the board used for its execution. Second, formal
properties verified during the design phase must be preserved at
runtime. To tackle these issues, we propose an approach for design-
ing UML models in a modular way and deploying them for V&V
activities or embedded execution. This approach uses UML modu-
larity mechanisms to specify the system in a generic way, and to
connect it to a given (abstract or real) environment. This technique
has been applied on several UML models of embedded systems to
analyze their behaviors by simulation and LTL model-checking
before deploying them on embedded STM32 boards.

CCS CONCEPTS
• Software and its engineering → Formal software verification;
Interpreters; • Computing methodologies → Model verification
and validation; • Computer systems organization→ Embedded
software.

KEYWORDS
Deployment, UML Execution, Model-checking, Embedded Systems,
Model-Driven Engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8135-2/20/10. . . $15.00
https://doi.org/10.1145/3417990.3419227

ACM Reference Format:
Valentin Besnard, Frédéric Jouault, Matthias Brun, Ciprian Teodorov, Philippe
Dhaussy, and Jérôme Delatour. 2020. Modular Deployment of UML Models
for V&VActivities and Embedded Execution. InACM/IEEE 23rd International
Conference on Model Driven Engineering Languages and Systems (MODELS
’20 Companion), October 18–23, 2020, Virtual Event, Canada. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3417990.3419227

1 INTRODUCTION
To face the increasing complexity of embedded systems, software
programs are designed using models. With model-driven engineer-
ing (MDE), these models can be analyzed at early design stages
with formal verification techniques. To that end, not only design
models have to be executable but a model of their environment is
also required for the verification step. Simply mocking inputs and
outputs of the system model, as made for testing, is not sufficient
here because the goal is to get appropriate interactions with the en-
vironment for different execution scenarios (not only one test case).
Therefore, Verification and Validation (V&V) activities (e.g., simula-
tion, model-checking) usually make use of abstract environment
models. These models abstract the actual environment to consider
a superset of all possible scenarios. Some refinements are usually
applied to take into consideration assumptions about the physical
world, thus removing some unrealistic scenarios. This can be partic-
ularly useful in model-checking to reduce the state-space explosion
problem [14]. Moreover, to deploy the system model on actual em-
bedded boards, abstract environment models have to be replaced
by concrete environment models. These models describe how the
system is connected to sensors and actuators through hardware
peripherals of the embedded target. Such models do not specify
scenarios but rather the interaction with the physical environment.

Moreover, environment models are not limited to one abstract
and one concrete environment model per system. Indeed, analysis
techniques may require the use of several abstract environment
models (e.g., one for interactive simulation, one for formal veri-
fication). Engineers also need to explore several deployments on
embedded boards to determine the best one, according to project
constraints (e.g., cost, memory footprint). However, two main re-
search challenges remain for connecting the system model to differ-
ent environment models in a modular way. (1) The environment is

https://doi.org/10.1145/3417990.3419227
https://doi.org/10.1145/3417990.3419227

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Besnard et al.

often target-specific and tightly coupled with the systemmodel, hin-
dering modularity, and making difficult to change the environment
model for different V&V activities or runtime execution. (2) The
deployment usually relies on transformations (e.g., code generation,
model transformations) to refine the platform-independent design
model into a platform-specific model. These transformations are
usually not proven, which makes difficult to ensure that the exe-
cutable code deployed on actual embedded boards preserves formal
properties verified on the design model during V&V activities.

To address these issues, this paper presents an approach for de-
ploying models of embedded systems in the context of UML [21], a
language that emerges as the de-facto standard for the design of
software applications in industry. The goal of our approach is to
decouple the system from the environment such that the environ-
ment model can be changed at any time without having to update
other parts of the model. Our work provides modeling guidelines
and a reference architecture, based on several files, to improve the
modularity of UML models. Using UML modularity mechanisms
(i.e., ElementImport and Package) and XML Metadata Interchange
(XMI) identifiers, we are able to split the design of a UML model in
several files including one for the system and one for each environ-
ment model. The system is thus defined in a platform-independent
way and connected to a given environment for verification or de-
ployment on embedded targets. For V&V activities, an abstract
environment model, designed using UML state machines, is used
to close the system execution. A given environment abstraction is
usually specific to the V&V technique applied on the model (e.g.,
simulation, model-checking). In simulation, the user wants to ex-
plore different execution traces while in model-checking, the whole
model state-space has to be explored. For actual execution, a con-
crete platform-specific environment model is used for connecting
UML models to hardware platforms through a low-layer interface.
This interface enables the use of UML to configure and to use mi-
crocontroller peripherals. This work has been put into practice to
extend the Embedded Model Interpreter (EMI) presented in [4, 5].
This tool defines a unique implementation for the UML operational
semantics to ensure consistency between V&V activities and ex-
ecution of UML models on embedded platforms. Prior research
work on this tool shows its capabilities to perform simulation [4],
model-checking of Linear Temporal Logic (LTL) properties [4], and
monitoring [5], but it misses to address the deployment of modular
UML models. In this paper, our work mitigates this shortcoming
and shows that a uniform and modular UML-based modeling ap-
proach can ease the development process. It helps to preserve the
verification results at runtime by deploying on embedded targets
the same pair (system model + UML operational semantics) as the
one used during V&V activities. The main contributions of this
study are: (1) The same system model can be easily connected to
different environment models using a modular architecture. (2) The
reference architecture and its instantiation can be used as a model-
ing guideline for other design approaches. (3) This work enables to
connect the embedded UML models to the hardware peripherals
through a low-layer interface. (4) This transformation-free tech-
nique gives more confidence in the fact that properties verified
during the design phase will also be verified at runtime when the
embedded model interpreter is used.

This approach has been evaluated on three UML models of em-
bedded systems. For each system, an abstract environment model
has been designed and was used for simulation and model verifica-
tion with the OBP21 model-checker [28, 29]. These system models
have also been deployed on a STM322 discovery board using con-
crete environment models to make the link with the hardware
peripherals of the board.

The remainder of this paper is structured as follows. Section 2
describes a simple model used as example while Section 3 gives an
overview of our approach. In Section 4, we present how to design
modular UML models and we show in Section 5 how such models
can be linked to hardware platforms. In Section 6, we detail how
these models can be deployed on the model interpreter. Section 7
applies our approach on multiple models of embedded systems.
Section 8 reviews the state of the art and we finally conclude this
paper in Section 9.

2 ILLUSTRATING EXAMPLE
To illustrate our work, we use a very simple Button-Led system
that switches On (respectively Off) a led when a button is pressed
(respectively released). This system is composed of only one active
object, named controller, which is responsible for managing the
system behavior. As shown in Figure 1, the state machine of this
object sends the lightOn (respectively lightOff) event on the light
port when the buttonPressed (respectively buttonReleased) event is
received.

Figure 1: Controller statemachine of theButton-Led system.

In this example, the system can be linked to four different envi-
ronment models. They can all be executed by the model interpreter
used in this project. Figure 2 shows how each environment is con-
nected to the system sys through ports. Both the system and the
environment are parts of the Main composite structure used for
instantiation on the model interpreter. The following describes the
four environment models used in this example.

interactiveEnv: This first environment is an abstraction of the
real environment and can be used for interactive simulation during
early V&V activities. The physical environment is abstracted with
only one instance of InteractiveButtonLight, called ibl. The state
machine of this class is shown in Figure 3a. This state machine has
only one state and one transition per sent or received event. For each
received event, a transition is triggered each time an occurrence of
this event (identified on figures by the name of the event followed
by “_SE”) is received. For sent events, corresponding transitions
1OBP2: http://www.obpcdl.org/
2STM32 discovery board is equipped with a 32-bits microcontroller ARM cortex M4, 1
MB Flash memory and 192 kB RAM.

http://www.obpcdl.org/

Modular Deployment of UML Models for V&V Activities and Embedded Execution MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

(a) Button-Led system with environment for interactive simulation

(b) Button-Led system with simulated environment

(c) Button-Led system with GPIO environment

(d) Button-Led system with PWM environment

Figure 2: Button-Led system with different environments.

rely on completion events such that they can be fired at any time.
This is the most generic environment that can be used because all
event interleavings are possible.

simulatedEnv: This environment model refines the previous
one by taking into account an abstraction of the physical world:
“The button cannot be pressed two times consecutively without
being released”. This abstraction can be used for model verification.
The state machine of the SimulatedButtonLight class used in this
model is depicted in Figure 3b. Two states are used to exclude all
scenarios where two buttonPressed events or two ButtonReleased
events are sent successively. However, it considers that lightOn and
lightOff events can be sent at any time by the system.

gpioEnv: This environment can be used to deploy the system on
an embedded target using General Purpose Inputs/Outputs (GPIOs).
These peripherals can only be used to read or output all-or-nothing
data. The envLed object is linked to an output pin while the envBut-
ton object is mapped to an input pin such that the physical state
of the button can be read by polling (i.e., by checking actively the
button state). State machines of GpioButton and GpioLed classes are
depicted in Figures 3c and 3d.

pwmEnv: This last environment can be used to deploy the sys-
tem on an embedded target but with different hardware peripherals.

(a) State machine of the InteractiveButtonLight class.

(b) State machine of the SimulatedButtonLight class.

(c) State machine of the GpioButton class.

(d) State machine of the GpioLed class.

Figure 3: State machines of different Button-Led environ-
ment classes.

The envLed object is connected here to a Pulse Width Modulation
(PWM) peripheral, which enables to control the light intensity of
the led. The envButton object is here also linked to an input GPIO
pin but this time the button state reading is triggered by an external
interrupt. State machines of GpioButtonIT and PwmLed classes are
quite similar to those of GpioButton and GpioLed classes, therefore
there are not illustrated here.

To simulate, verify, and execute the behavior of this Button-Led
model, we may require to link the system to each one of these
environments at different phases of its development. Using the last
two environments, this example will also enable to understand how
the system can be linked to different hardware peripherals.

3 APPROACH OVERVIEW
To better understand the scope of this work, this section gives
an overview of our approach for deploying modular UML models

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Besnard et al.

Figure 4: Approach overview for deploying modular UML
models on embedded targets.

on embedded targets. Figure 4 illustrates our modular approach
to decouple the system model from the environment model such
that the environment model becomes an exchangeable component.
First, the model is designed in a modular way such that elements
of the system (System Elements) and elements of the environment
(Environment Elements) are specified in different files and linked
together through well-defined interfaces. All these UML elements
create a Modular UML Model that can be loaded into the Model
Interpreter at compile-time. This step uses a UML to C Serializer
tool that serializes data of the model into C structure initializers
for being loaded in the Execution Environment memory. For each
element of the UML model, this means that each useful field of
the UML metaclass instance is serialized as a field of a C structure
initializer. Contrary to model transformations (e.g., package merge,
code generation), our UML to C Serializer does not capture the
semantics of the modeling language. The resulting UML Model,
loaded in the execution platform memory, contains only data while
the operational semantics of UML is defined by theModel Interpreter.
In practice, the implementation of the UML semantics is made using
the C language to keep efficient performance at runtime.

In case of an abstract environment model, Analysis Tools can
be connected to the Model interpreter through a communication
interface (Com Interface) to apply V&V activities on the interpreted
model. In case of a concrete environment model, the interpreted
model can interact with its physical environment throughHardware
Peripherals of the board. The environment model can access these
peripherals through a low-layer interface defined into C program-
ming language, the native language of the interpreter. Using our
approach, it is also possible to use a concrete environment model
and connect the Model Interpreter to Analysis Tools such that it
becomes possible to apply (hardware in the loop) simulation on the
actual system execution.

Figure 5: Generic composite structure.

In this work, the system model is directly deployed into its exe-
cution environment thanks to the embedded model interpreter of
Besnard et al. presented in [4, 5]. Indeed, this tool can directly exe-
cute design models without additional transformations (e.g., code
generation, model transformation). This model interpreter relies on
a unique implementation of the modeling language semantics (here
the UML semantics) to verify and execute UML models of embed-
ded systems software. Therefore, unproven model transformations
that capture the modeling language semantics must be avoided to
preserve the unique implementation of the UML semantics in the
model interpreter. Being transformation-free, this approach also
helps to ensure that formal properties proven on the design model
(e.g., properties to ensure the correctness of the system behavior)
are still verified on the deployed model used at runtime.

The proposed approach offers multiple advantages. (1) The sys-
temmodel can be defined in a generic way and deployed as it stands
for model verification and runtime execution. (2) It provides the
possibility to easily link the system model with different environ-
ment models, and with hardware peripherals of embedded targets.
(3) No model transformation is required to perform the deployment.
This helps ensuring the preservation of verified properties at run-
time by coupling modular UML models with the embedded model
interpreter.

4 MODULAR UML MODELS
This section describes the reference architecture used to design
models in a modular way as well as UML mechanisms used to
support this modularity.

To decouple the system from its environment, we define a ref-
erence architecture that can be used as a modeling guideline. The
Main composite structure of this modular architecture is shown
in general terms in Figure 5. It contains two components: one for
the system and one for the environment, respectively called sys
and env. Both components have ports which enables to link them
together with connectors such that they can interact with each
other by sending signals through ports. Hence, these components
do not reveal their internal structure but only the interfaces used by
their ports. Each port has indeed provided and required interfaces
that define events that can be respectively received or sent by the
component to which the port belongs.

This reference architecture is also represented with a package
diagram in Figure 6. This diagram contains four packages. The
System package describes the system component that we want
to verify and deploy. The Environment package defines the envi-
ronment component which is used here to link the system with

Modular Deployment of UML Models for V&V Activities and Embedded Execution MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

DALSystem Environment

Main

Figure 6: Package diagram of a modular UML model with
environment decoupled from the system.

its actual physical environment or to specify an abstraction of it.
We also need to describe the events exchanged by these two com-
ponents as well as their port interfaces. This is performed by the
DAL package that defines a Device Abstraction Layer (DAL) to
abstract the environment from the system point of view. The goal
of this package is to avoid defining the system in a specific way, but
rather independently of the used environment, by relying only on
interfaces. Finally, theMain package defines the Main composite
structure in charge of connecting both the system (sys) and the
environment (env) components together. This is the root composite
structure of the model, which can be used for model instantiation
following rules defined in the Precise Semantics for UMLComposite
Structures specification [22].

This reference architecture aims at decoupling the system from
the environment such that the environment model becomes an ex-
changeable component. For this purpose, each package of Figure 6
is defined in its own file. To make reference to local elements, the
concept used in XMI files is XMI identifiers (XMI IDs) because each
element is identified by its owned XMI id. However, one main prob-
lem is to keep references to external elements (i.e., elements defined
in other files) up-to-date. To address this issue, we use “stable” XMI
IDs for all elements of the model. Indeed, we use the fully qualified
name of each element as XMI id rather than common XMI IDs,
which are usually not human-readable and meaningless. By anal-
ogy to program compilation, such XMI IDs can be seen as external
symbols that have to be solved by the linker. These “stable” XMI
IDs can be easily used by engineers to design models. To import
an external element in a file, engineers only need the name of the
UML file that contains the element as well as the fully qualified
name of this element. These XMI IDs are said “stable” because they
can be shared by several UML files. As a result, the use of the same
qualified name in different files refer to the exact same element. To
ensure consistency of the model, some OCL validation rules taken
from the UML specification are checked before deployment. Using
this approach, it becomes possible to only change the environment
component to use a different one assuming that this component
has the same name and the same ports. Despite the use of different
environment models, other files (e.g., the one defining the Main
composite structure) will be able to make reference to the environ-
ment component thanks to the use of “stable” XMI IDs. If XMI IDs
were not “stable”, engineers would have to update all references to
this component in other files by changing (by hand) the value of
its XMI id.

As shown in Figure 2, this architecture can be applied on the
Button-Led example model to decouple the system from the envi-
ronment. As a result, the environment component can be easily
exchanged to make interactive simulation (interactiveEnv), simula-
tion (simulatedEnv), or to explore different deployments on actual
embedded boards (gpioEnv or pwmEnv).

5 LINK MODEL WITH HARDWARE
To deploy UML models on actual embedded boards, a concrete
environment model must be defined to connect the system with
hardware peripherals. In this case, the environment model is not
an abstraction of the physical environment. It does not define sce-
narios based on environment assumptions but it makes the link to
the actual system environment through sensors and actuators. In
fact, the actual execution trace will depend on physical events that
occurred in the environment and that are detected by the system.

The architecture used to deploy a modular UML model with
a concrete environment is illustrated in Figure 7. The System is
connected to the Environment through the DAL, which defines
interfaces between both components. In comparison to Figure 6,
some additional packages are used to specify how the system is
connected to the hardware of an embedded board. The DIL (Device
Implementation Layer) is an implementation of the DAL. It defines
UML classes, which can be seen as kinds of devices, the environ-
ment component can use. These devices enable to map events sent
or received by the system with some actions (e.g., get value of a
sensor, launch a timer, move an actuator) on microcontroller periph-
erals. This mapping is made using a UML state machine for each
class of the DIL (e.g., state machines of GpioButton and GpioLed
in Figures 3c and 3d). For each event defined in DAL interfaces,
the DIL translates software UML events into physical signals and
conversely. For an event sent by the system to the environment,
the device specifies what has to be done each time this event is
received. For instance, for the Button-Led system with the pwmEnv
environment, the receipt of an occurrence of the lightOn event will
launch a PWM channel with a given duty cycle. For an event sent by

DAL

DIL

System Environment

Main

Low-Layer Interface Target

Figure 7: Package diagram of a modular UML model con-
nected to the actual physical environment through hard-
ware peripherals of a target.

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Besnard et al.

the environment to the system, the device defines how the physical
event associated to this UML event is captured (i.e., with which
kind of sensors). For instance, for the Button-Led system, the event
buttonPressed is detected by polling in the gpioEnv while this is
done using an external interrupt in the pwmEnv. Each time a phys-
ical event is detected, it triggers the sending of the corresponding
UML event to the system.

To implement these devices, the DIL uses two other packages.
The Low-Layer Interface defines all functions that can be used
to activate, configure, or run microcontrollers peripherals. These
functions can then be called in guards and effects of UML state ma-
chine transitions using respectively Opaque Expressions or Opaques
behaviors, which are standard UML concepts dedicated to the exe-
cution of non-UML pieces of code. Opaque Expressions and Opaques
behaviors are thus used in UML models to make the link between
UML concepts and low-level code. They are specified using the C-
based action language of the model interpreter that provides some
primitives to modify the model execution state and call functions of
the Low-Layer Interface defined in C. For instance, in Figure 3c,
the GpioButton state machine can read the value of a GPIO input pin
by calling the function UML_GpioReadBits(). The Target package
is also required to list all peripherals available on the board used
to execute this modular UML model. For instance, for the STM32
discovery board used to deploy the Button-Led model, this target-
specific package contains among others the list of GPIO pins and
ports, the list of timers, as well as the list of PWM channels available
on this board.

Once devices of the DIL have been modeled, the Environment
can instantiate these devices and specify on which peripheral num-
ber each device is linked. For the Button-Led system with gpioEnv,
the DIL defines a class GpioButton with two attributes: the GPIO
port and the GPIO pin of the button. In the specific case of envBut-
ton, the gpioEnv composite structure (in Figure 2c) indicates that
port PORT_A and pin PIN_0 were used. Both PORT_A and PIN_0 are
UML elements defined in the STM32 Target package to which the
Environment has to access to configure devices of the DIL.

One main advantage of this approach is that different levels of
abstraction can be used depending on the context of each project.
Engineers can choose at which level it seems more relevant to stop
modeling to use low-level code. In this work, we choose to model
devices of the Board Support Package (BSP) but to access micro-
controller peripherals with C code through a low-layer interface. It
is possible to go further by modeling peripherals in UML and only
accessing registers of the board using low-level code. However, we
have decided to not do this because peripherals are specific to each
microcontroller while devices (e.g., button, led) are generic concepts
that can be more easily reused from one target to another. Using
more abstraction levels also complexifies the model due to an in-
crease in the number of UML objects, which may impact execution
performance.

6 DEPLOYMENT OF MODULAR MODELS ON
A MODEL INTERPRETER

This section explains how to deploy modular UML models on an
existing model interpreter [4, 5] and what are the benefits of our
approach in this context.

To deploy modular UML models, we use a model interpreter that
defines a generic execution platform to execute UML models. In our
approach, the system model is defined in a generic way (i.e., inde-
pendently of the environment and of the execution platform). This
is a Platform Independent Model (PIM) that can be executed by the
model interpreter without refinement. As a result, the same system
model can be used for execution and V&V activities. A classical
technique to execute UML models is to refine a PIM into a Platform
Specific Model (PSM), which contains details about the deployment
and the hardware platform. Our approach is an alternative to model
refinement for deploying models without model transformations.
Knowledge about the environment and the execution platform are
specified into an environment component and linked to the system
component for deployment. This technique enables to deploy the
same system with different environment models for all activities
required during its development cycle. If engineers want to deploy
the system differently (e.g., with different hardware peripherals),
they just need to exchange the environment component.

To better understand how to apply this deployment technique in
practice, Figure 8 presents the process used to deploy UML models
on the model interpreter. Our modular UMLmodels are split up into
several files in the standard XMI format. Arbitrarily, four UML files
are used in the figure but in practice we use one file per package
(i.e., one file for the System, one file for the DAL, and so on). All
these UML files are taken as inputs by the UML to C Serializer to
serialize the model in C programming language. This process is
directly applied on the resource set of all these XMI files. We keep
relations between elements of these files using Element Imports and
our “stable” XMI IDs. Resolution of these references to external
elements is directly managed by the Eclipse Modeling Framework
[27] using the EcoreUtil.resolve()method. With this technique,
all these UML files are seen as only one model by the serializer.
This tool serializes the UML model into C source code (UML Model
(C)) such that the model can be loaded into the interpreter memory.
In fact, the serializer performs a direct mapping of UML elements
into C structure initializers. Unlike code generation, this tool does
not capture the language semantics but only generates data (i.e., no
functions are generated). Finally, both the UML Model (C) and the
Interpreter Source Code are compiled and linked together to produce
the Binary Executable of the system. This Binary Executable can

Figure 8: Deployment of a modular UML model on the em-
bedded model interpreter.

Modular Deployment of UML Models for V&V Activities and Embedded Execution MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

then be used to apply multiple V&V activities on the runtime model
with the OBP2 tool [28, 29]: trace-based simulation, LTL model-
checking, and deadlock detection. It can also be executed on an
embedded target if the environment model defines how to connect
this model to hardware peripherals of the board.

An interesting advantage of deploying the reference architecture
on this embedded model interpreter is to ensure the preservation
of verified properties at runtime. These properties encode system
requirements and are verified using model-checking to ensure the
functional correctness of the system. To preserve the software
correctness at runtime, the embedded model interpreter has the
specificity to use the same combination (systemmodel + operational
semantics) for analysis activities and runtime execution. Only the
environment model changes.

As a result, functional properties that are usually expressed only
in terms of system objects will also remain verified at runtime
on the condition that the abstract environment model covers all
execution cases of the physical environment.

Environment models used for formal verification are an abstrac-
tion of the physical environment that theoretically considers a su-
perset of all possible cases. However, to avoid state-space explosion,
abstract environment models are usually refined by considering
some assumptions about the physical world. By taking into account
these assumptions, the model designer will remove some unrealistic
scenarios in the design model. During this error-prone task, some
realistic scenarios may potentially be removed too, which would
break the condition that the abstract environment model covers
all execution cases of the physical environment. In practice, it is
possible to check that assumptions, considered during the design
phase, still hold at runtime. For this purpose, the embedded model
interpreter provides monitoring facilities [5]. Design assumptions
can be encoded as monitors to check that such hypotheses are
actually valid at runtime and, hence, that the current execution
trace has been covered by model verification. Our monitoring solu-
tion is transformation-free and enables to trigger error recovery or
fail-safe mechanisms in case of runtime failures.

Moreover, it is also necessary to check the behavior of software
drivers used to run microcontroller peripherals (e.g., using testing).
To that end, monitoring can also be used to detect bugs in these
components as well as other external defects (e.g., deficient hard-
ware components). For all these purposes, runtime monitors can
trigger some fault recovery mechanisms when a failure is detected.

7 EXPERIMENTS
Our approach has been applied on the Button-Led model intro-
duced in Section 2, and on two models of embedded systems: a
level crossing system, and a cruise control user-interface. The goal
of these experiments is to show that modular UML models can be
deployed with abstract environment models to perform V&V activi-
ties, as well as concrete environment models for being executed on
actual embedded targets. All these models have been designed with
tUML [17], a textual syntax for UML. They conform to a subset
of Eclipse UML3 based on classes, composite structures, and state
machines. Their fine-grained behavior is specified with the C-based
action language of the model interpreter. These models have been

3Eclipse UML: https://www.eclipse.org/modeling/mdt/?project=uml2

(a) Level crossing system with a simulated environment.

(b) Level crossing system with a concrete environment.

Figure 9: Level crossing systemwith different environments.

analyzed with the OBP2model-checker that can be connected to the
interpreter for model verification. They have also been deployed
on STM32 embedded boards to be used in their actual physical
environments.

Button-Led: This model has been deployed on the model inter-
preter with each one of the four environment models presented in
Section 2. Both interactiveEnv and simulatedEnv have been used
to perform trace-based simulation with OBP2. gpioEnv and pw-
mEnv environments have then been used to deploy the system on
a STM32 embedded board. Both experiments show that the red
led of the board switches on when the user button is pressed, and
switches off when the user button is released.

Level Crossing: This approach has also been applied on the
model of a level crossing controller presented in [4]. The goal of
this system is to ensure the safety during the passage of the train on
the level crossing. In [4], the model of the system has been closed
with an abstract environment model tightly coupled with the sys-
tem. This environment model relies on the assumption that there is
only one train looping on the level crossing. In our experiments, we
reuse this model and we decouple the abstract environment from
the system as illustrated in Figure 9a. For this purpose, both the
system and the environment have been encapsulated into dedicated
components and linked together with connectors to obtain a mod-
ular UML model. Modularizing an existing model is not a difficult
task. It mainly consists in splitting the model in different files and
changing the model structure to add some composite structures,

 https://www.eclipse.org/modeling/mdt/?project=uml2

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Besnard et al.

(a) Cruise control interface system with a simulated environment.

(b) Cruise control interface system with a concrete environment.

Figure 10: Cruise control interface system with different en-
vironments.

ports, and interfaces. Using this model, we have succeeded to per-
form simulation, deadlock detection, and model-checking of four
LTL properties from [4]. The state-space of this model is composed
of 122 execution states linked together with 209 transitions, which
gives an idea of the model complexity. In this paper, we also intro-
duce a concrete environment model depicted in Figure 9b. Using
this setup, the level crossing model has been successfully executed
on a STM32 board.

Cruise Control Interface (CCI): To evaluate our approach
on a more complex embedded system, we design a model of the
user-interface of a cruise control system introduced in [5]. This sub-
system aims at computing the cruise speed of the vehicle according
to user interactions and the current speed returned by the engine.
For this model, we have designed an abstract environment model
illustrated in Figure 10a. This model makes the assumption that
the system is independent of any other systems (e.g., Electronic
Stability Program (ESP)). To consider a superset of all possible cases
for model verification, we also consider that there is no cause-effect

relationship between the value of the cruise speed setpoint sent
to the engine and its current speed. Therefore, the current speed
can go from 0 to 100km/h in one step. This cruise control interface
model has been deployed with this abstract environment model
on the model interpreter. The OBP2 model-checker has enabled to
perform simulation, state-space exploration, and model-checking
of three LTL properties introduced in [5]. These properties have
been verified on this model having a state-space of 46,444,386 execu-
tion states linked with 82,734,350 transitions. For deployment on a
STM32 board, we have also designed a concrete environment model
(shown in Figure 10b) to connect the system to its sensors and ac-
tuators through microcontroller peripherals. With this concrete
model, the CCI system has been executed on a STM32 board.

Conclusions: Based on these experiments, we can conclude that
the approach is usable and that it provides interesting benefits. First,
our technique helps to improve design quality of executable UML
models by providing modularity at model-level and by avoiding
code duplication of the system component. Stable XMI IDs have
been really helpful to define models in multiple files. Our architec-
ture simplifies the modeling task by designing several variants of
the same UML model for different V&V activities only by designing
different environment models. Second, we notice that using a mod-
ular UML architecture has no impact on results of V&V activities.
We obtained the same size of model state-spaces and we verified
the same LTL properties on our modular UML models than original
non-modular UML models taken from the MDE community. This
result was expected since our modular architecture only impacts
the structural part of models, not their behavioral part.

During these experiments, the main difficulty has been the defi-
nition of UML components. For modularity, this approach requires
components and ports with interfaces. Indeed, events cannot be
directly sent to the target object but to a port that will forward
this event to the final object or to another port. Hence, defining
modular UML models require to use more UML elements. Due to
this fact, UML models become more modular but also a bit more
complex, especially for large systems.

In terms of threats to validity, our experiments do not consider
models of industrial size to corroborate the approach scalability.
The application of this modular architecture on a real-size model is
kept as a future work. Another limitation is that we only consider
the STM32 discovery board for model deployment with concrete
environment models. To mitigate this problem, we have presented
several concrete environment models using different peripherals to
interact with the physical world.

8 RELATEDWORK
Our work focuses on deploying modular UMLmodels with different
environment models to perform V&V activities as well as execution
with hardware peripherals of embedded boards. In the context of
MDE, different tools provide similar capabilities.

Modular Model Verification. Several other works aim at de-
scribing the system environment separately from the system for
verification purpose. The approach [15, 28] used in the OBP model-
checker (previous version of OBP2) is based on a Context Descrip-
tion Language (CDL). This domain-specific language is used to
describe the context (i.e., the environment) using UML-like activity

Modular Deployment of UML Models for V&V Activities and Embedded Execution MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

and sequence diagrams, as well as temporal properties that must
be verified by the system behavior. In comparison with CDL, our
approach enables to specify the environment model directly in the
design language (i.e., the language used for system modeling) and
with the same design concepts (i.e., classes, state machines), which
facilitates its usability by engineers.

Similar works use compositional analysis techniques [11, 13, 30]
to verify system behaviors. These techniques aim at verifying each
component of a software system separately from each other by
determining which interactions the component can have with its
physical environment. When all components have been individu-
ally verified, a dedicated composition operator is applied on these
components to ensure that all properties are preserved on the whole
system. In comparison with our work, compositional verification
approaches help to reduce the state-space explosion problem as well
as the amount of resources needed. However, they cannot ensure
the preservation of verified properties during model deployment.

Model Deployment.More focused onmodel deployment, a typ-
ical approach, defined as a key concept of model-driven architecture
in [23], is model refinement from PIMs to PSMs. This technique
aims at designing a software system as a PIM and then to transform
it into a PSM by adding target-specific rules for being able to deploy
it on actual systems. In [20], model refinement is used in an educa-
tional tool based on an event-driven architecture. A set of model
transformation rules enables to transform a PIM into a PSM, which
can be used, almost as it stands, to generate the application code.
In [25], a research project aims at verifying radio communication
systems with a UML framework. This tool can be used to specify,
in UML, the software application (PIM), the hardware platform,
and the deployment (software + hardware). Using this setup, the
framework enables to perform verification at different levels and
to check if real-time and power constraints are satisfied.

Another technique formodel deployment uses the packagemerge
operator [31]. Such a technique has been applied in [2] to improve
the modularity and the separation of concerns in architecture mod-
eling. Despite these benefits, package merge has the drawback to
imply “a set of transformations, where the content of the merged
package is expanded in the merging package” [2].

Regarding deployment on actual embedded targets, Arduino
Designer is a modeling tool that provides a graphical language to
design software programs for Arduino. It provides the possibilities
to connect these programs to hardware peripherals and deploy them
on Arduino boards using code generation. Arduino Designer has
also been enriched with simulation and animation capabilities [12]
in Gemoc Studio [6] .

In comparison with model refinement, package merge, and Ar-
duinoDesigner, our approach for deployingmodels is transformation-
free. It enables to preserve properties, verified during V&V activities,
on the runtime model executed by the model interpreter.

UMLModel Execution.The study in [10] provides a systematic
review of the state-of-the-art for executing UML models. Among
the available tools, Moka [24] and Moliz [19] are two interpreters of
fUML models that can be used for model execution, simulation and
testing purposes. In comparison with our work, both interpreters
cannot be used to execute embedded systems on embedded targets.
GUML [7] and Unicomp [9] are two model compilers that can
generate efficient low-level executable code for respectively UML

state machines and UML activities. Papyrus-RT [16] is a tool that
provides analysis capabilities and code generation for UML-RT
models, a variant of UML models for real-time systems. These
model compilers and code generators can be used to analyze and
execute UML models but they rely on transformations to obtain the
executable code. These unproven transformations do not ensure
property preservation at runtime.

Property Preservation. Different tools are able to preserve the
properties verified during the V&V phase on the executable code
used at runtime. SCADE [3] is a synchronous approach for mod-
eling, validating, and executing models of embedded systems and
relies on a certified code generator to ensure the correctness of the
generated code. CompCert C [18] is a verified C compiler that brings
the proof that the generated executable code it produces conforms
to the program taken as input. In a similar way, the work in [8]
defines an automated round-trip approach to ensure the preserva-
tion of non-functional properties by using transformations with
backward propagation facilities for going from code back to model.
Other approaches (e.g., Event-B [1], UML-B [26]) use model refine-
ment to ensure via proof obligations that a more refined version of
a model conforms to its abstraction. All these approaches provides
interesting techniques to ensure the preservation of properties on
the executable code. In comparison with our approach, these works
rely on translational approaches (i.e., model transformation, code
generation, compilation) while our a work provides a solution for
operational approaches (i.e., using interpretation).

9 CONCLUSION
The deployment of models is an essential feature of MDE. This
paper has presented a model deployment technique for verifying
and executing modular UML models of embedded systems.

Using this approach, engineers can define modular UML models
by decoupling the environment model from the system model. The
system model can be described in a generic way and linked with
different abstract or concrete environment models. As a result, the
same system component is used for all activities (i.e., simulation,
model verification, and actual execution). Only the environment
component has to be exchanged for deploying the system in dif-
ferent ways. This can be really helpful for engineers to explore
different deployment configurations and identify the one that fits
the best project constraints. To provide such modularity, our ap-
proach relies on a reference architecture, that provides modeling
guidelines, as well as UML modularity mechanisms (e.g., ports, ele-
ment imports) coupled with “stable” XMI IDs. This technique can
be used to deploy abstract environment models with the system
by taking into consideration assumptions about the physical world.
These abstractions are useful to avoid state-space explosion and,
thus, to apply analysis tools (e.g., simulator, model-checker). Our
approach also provides facilities to link UML models with hardware
peripherals of embedded platforms using concrete environment
models. Such models enable to interact with the physical environ-
ment through sensors and actuators of embedded boards.

This modular deployment technique has been applied on multi-
ple embedded system models of different complexity. These models
have been designed in UML and deployed on an embedded model
interpreter. This tool relies on a unique implementation of the

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Besnard et al.

language semantics and provides a generic execution platform to
execute and verify UMLmodels. Abstract environment models have
been used to analyze and validate these system models with the
OBP2 model-checker before deploying them on embedded STM32
boards with concrete environment models. This approach has been
successfully applied on UML models used as examples.

As a result, our approach makes a first step to address the two
main research challenges mentioned in this paper. First, it provides
a way to define and use different environment models for analysis
activities and runtime execution. The system model is platform
independent and entirely decoupled from the environment model.
Second, the application of this technique coupled with the embed-
ded model interpreter helps to ensure that the executable code
deployed on embedded boards still preserve properties verified on
the design model.

Further improvements of this work aim at applying software
engineering techniques to better model the environment. Indeed,
it is possible to have a lot of abstraction layers, like in operating
systems (e.g., Linux). For instance, designing a generic model of
the board support package (BSP) for the STM32 discovery board
would be useful to better reuse low-level components. Moreover,
we are also interested in applying our approach on an industrial
case study to check its scalability on more complex systems.

ACKNOWLEDGMENTS
This work is partially funded by Davidson Consulting. The au-
thors especially thank David Olivier for his advice and industrial
feedback.

REFERENCES
[1] Jean-RaymondAbrial. 2013.Modeling in Event-B: System and Software Engineering.

Cambridge University Press, New York, NY, USA.
[2] Samir Ammour and Philippe Desfray. 2006. A Concern-based Technique for

Architecture Modelling Using the UML Package Merge. Electronic Notes in
Theoretical Computer Science 163, 1 (2006), 7–18. https://doi.org/10.1016/j.entcs.
2006.07.005 Proceedings of the FirstWorkshop on Aspect-Based andModel-Based
Separation of Concerns in Software Systems (ABMB 2005).

[3] Gérard Berry. 2007. SCADE: Synchronous Design and Validation of Embedded
Control Software. In Next Generation Design and Verification Methodologies for
Distributed Embedded Control Systems, S. Ramesh and Prahladavaradan Sampath
(Eds.). Springer Netherlands, Dordrecht, 19–33.

[4] Valentin Besnard, Matthias Brun, Frédéric Jouault, Ciprian Teodorov, and Philippe
Dhaussy. 2018. Unified LTL Verification and Embedded Execution of UMLModels.
InACM/IEEE 21th International Conference onModel Driven Engineering Languages
and Systems (MODELS ’18). Copenhagen, Denmark. https://doi.org/10.1145/
3239372.3239395

[5] Valentin Besnard, Ciprian Teodorov, Frédéric Jouault, Matthias Brun, and Philippe
Dhaussy. 2019. Verifying and Monitoring UML Models with Observer Automata.
InACM/IEEE 22th International Conference onModel Driven Engineering Languages
and Systems (MODELS ’19). Munich, Germany, 161–171. https://doi.org/10.1109/
MODELS.2019.000-5

[6] Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer, Julien Dean-
toni, and Benoit Combemale. 2016. Execution Framework of the GEMOC Studio
(Tool Demo). In Proceedings of the 2016 ACM SIGPLAN International Conference
on Software Language Engineering (Amsterdam, Netherlands) (SLE 2016). ACM,
New York, NY, USA, 84–89. https://doi.org/10.1145/2997364.2997384

[7] Asma Charfi Smaoui, Chokri Mraidha, and Pierre Boulet. 2012. An Optimized
Compilation of UML State Machines. In ISORC - 15th IEEE International Sym-
posium on Object/Component/Service-Oriented Real-Time Distributed Computing.
Shenzhen, China.

[8] Federico Ciccozzi. 2014. FromModels to Code and Back : A Round-trip Approach for
Model-driven Engineering of Embedded Systems. Ph.D. Dissertation. Mälardalen
University, Embedded Systems.

[9] Federico Ciccozzi. 2018. Unicomp: A Semantics-aware Model Compiler for
Optimised Predictable Software. In Proceedings of the 40th International Conference
on Software Engineering: New Ideas and Emerging Results (Gothenburg, Sweden)

(ICSE-NIER ’18). ACM, New York, NY, USA, 41–44. https://doi.org/10.1145/
3183399.3183406

[10] Federico Ciccozzi, Ivano Malavolta, and Bran Selic. 2018. Execution of UML
models: a systematic review of research and practice. Software & SystemsModeling
(10 April 2018). https://doi.org/10.1007/s10270-018-0675-4

[11] EdmundM. Clarke, David E. Long, and Kenneth L. McMillan. 1989. Compositional
Model Checking. In Proceedings of the Fourth Annual Symposium on Logic in
Computer Science. 353–362. https://doi.org/10.1109/LICS.1989.39190

[12] Benoit Combemale and Cédric Brun. 2015. Breathe Life Into Your Designer!
http://gemoc.org/breathe-life-into-your-designer.html

[13] Luca de Alfaro and Thomas A. Henzinger. 2001. Interface Automata. In Pro-
ceedings of the 8th European Software Engineering Conference Held Jointly with
9th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering (Vienna, Austria) (ESEC/FSE-9). ACM, New York, NY, USA, 109–120.
https://doi.org/10.1145/503209.503226

[14] Philippe Dhaussy, Jean-Charles Roger, and Frédéric Boniol. 2011. Reducing
State Explosion with Context Modeling for Model-Checking. In 2011 IEEE 13th
International Symposium on High-Assurance Systems Engineering. 130–137. https:
//doi.org/10.1109/HASE.2011.24

[15] Philippe Dhaussy, Jean-Charles Roger, Luka Leroux, and Frédéric Boniol. 2012.
Context Aware Model Exploration with OBP tool to Improve Model-Checking.
In ERTS 2012. Toulouse, France, xx.

[16] N. Hili, J. Dingel, and A. Beaulieu. 2017. Modelling and Code Generation for Real-
Time Embedded Systems with UML-RT and Papyrus-RT. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C). 509–510.
https://doi.org/10.1109/ICSE-C.2017.168

[17] Frédéric Jouault, Ciprian Teodorov, Jérôme Delatour, Luka Le Roux, and Philippe
Dhaussy. 2014. Transformation de modèles UML vers Fiacre, via les langages
intermédiaires tUML et ABCD. Génie logiciel 109 (June 2014), 21–27.

[18] Xavier Leroy. 2017. The CompCert C verified compiler: Documentation and user’s
manual. Intern report. Inria.

[19] Tanja Mayerhofer and Philip Langer. 2012. Moliz: A Model Execution Framework
for UML Models. In Proceedings of the 2nd International Master Class on Model-
Driven Engineering: Modeling Wizards (Innsbruck, Austria) (MW ’12). ACM, New
York, NY, USA, Article 3, 2 pages. https://doi.org/10.1145/2448076.2448079

[20] Geert Monsieur, Monique Snoeck, Raf Haesen, and Wilfried Lemahieu. 2006. PIM
to PSM transformations for an event driven architecture in an educational tool.
Milestones, Models and Mappings for Model-Driven Architecture (2006), 49.

[21] OMG. 2017. Unified Modeling Language. https://www.omg.org/spec/UML/2.5.
1/PDF

[22] OMG. 2019. Precise Semantics of UML Composite Structures. https://www.omg.
org/spec/PSCS/1.2/PDF

[23] Richard F. Paige, Dimitrios S. Kolovos, and FionaA.C. Polack. 2005. Refinement via
Consistency Checking in MDA. Electronic Notes in Theoretical Computer Science
137, 2 (2005), 151–161. https://doi.org/10.1016/j.entcs.2005.04.029 Proceedings
of the REFINE 2005 Workshop (REFINE 2005).

[24] Sebastien Revol, Géry Delog, Arnaud Cuccurru, and Jérémie Tatibouët. 2018.
Papyrus: Moka Overview. https://wiki.eclipse.org/Papyrus/UserGuide/
ModelExecution

[25] Samuel Rouxel, Jean-Philippe Diguet, Guy Gogniat, Nicolas Bulteau, Jonathan
Carre-Gourdin, Jean-Etienne Goubard, and Christophe Moy. 2005. UML Frame-
work for PIM and PSM Verification of SDR Systems. In SDR Forum Technical
Conference’05. Anaheim, CA, United States.

[26] Colin Snook and Michael Butler. 2006. UML-B: Formal Modeling and Design
Aided by UML. ACM Trans. Softw. Eng. Methodol. 15, 1 (Jan. 2006), 92–122.
https://doi.org/10.1145/1125808.1125811

[27] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. 2009. EMF:
Eclipse Modeling Framework 2.0 (2nd ed.). Addison-Wesley Professional.

[28] Ciprian Teodorov, Philippe Dhaussy, and Luka Le Roux. 2017. Environment-
driven Reachability for Timed Systems. International Journal on Software Tools for
Technology Transfer 19, 2 (01 April 2017), 229–245. https://doi.org/10.1007/s10009-
015-0401-2

[29] Ciprian Teodorov, Luka Le Roux, Zoé Drey, and Philippe Dhaussy. 2016. Past-
Free[ze] reachability analysis: reaching further with DAG-directed exhaustive
state-space analysis. Software Testing, Verification and Reliability 26, 7 (2016),
516–542. https://doi.org/10.1002/stvr.1611

[30] Oksana Tkachuk, Matthew B. Dwyer, and Corina S. Pasareanu. 2003. Automated
Environment Generation for Software Model Checking. In 18th IEEE International
Conference on Automated Software Engineering, 2003. Proceedings. 116–127. https:
//doi.org/10.1109/ASE.2003.1240300

[31] Alanna Zito, Zinovy Diskin, and Juergen Dingel. 2006. Package Merge in UML 2:
Practice vs. Theory?. In Model Driven Engineering Languages and Systems, Oscar
Nierstrasz, Jon Whittle, David Harel, and Gianna Reggio (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 185–199. https://doi.org/10.1007/11880240_14

https://doi.org/10.1016/j.entcs.2006.07.005
https://doi.org/10.1016/j.entcs.2006.07.005
https://doi.org/10.1145/3239372.3239395
https://doi.org/10.1145/3239372.3239395
https://doi.org/10.1109/MODELS.2019.000-5
https://doi.org/10.1109/MODELS.2019.000-5
https://doi.org/10.1145/2997364.2997384
https://doi.org/10.1145/3183399.3183406
https://doi.org/10.1145/3183399.3183406
https://doi.org/10.1007/s10270-018-0675-4
https://doi.org/10.1109/LICS.1989.39190
http://gemoc.org/breathe-life-into-your-designer.html
https://doi.org/10.1145/503209.503226
https://doi.org/10.1109/HASE.2011.24
https://doi.org/10.1109/HASE.2011.24
https://doi.org/10.1109/ICSE-C.2017.168
https://doi.org/10.1145/2448076.2448079
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/PSCS/1.2/PDF
https://www.omg.org/spec/PSCS/1.2/PDF
https://doi.org/10.1016/j.entcs.2005.04.029
https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
https://doi.org/10.1145/1125808.1125811
https://doi.org/10.1007/s10009-015-0401-2
https://doi.org/10.1007/s10009-015-0401-2
https://doi.org/10.1002/stvr.1611
https://doi.org/10.1109/ASE.2003.1240300
https://doi.org/10.1109/ASE.2003.1240300
https://doi.org/10.1007/11880240_14

	Abstract
	1 Introduction
	2 Illustrating Example
	3 Approach Overview
	4 Modular UML Models
	5 Link Model with Hardware
	6 Deployment of Modular Models on a Model Interpreter
	7 Experiments
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

