
Verifying and Monitoring UML Models
with Observer Automata

A Transformation-free Approach

ACM/IEEE 22th International Conference on Model Driven Engineering
Languages and Systems (MODELS’19) in Munich, Germany

Valentin BESNARD 1 Ciprian TEODOROV 2 Frédéric JOUAULT 1

Matthias BRUN 1 Philippe DHAUSSY 2

1 ERIS, ESEO-TECH,
Angers, France

2 Lab-STICC UMR CNRS 6285,
ENSTA Bretagne, Brest, France

This work has been partially
funded by Davidson.

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 1 / 31

Introduction

Table of Contents

1 Introduction

2 Illustrating Example

3 Expressing Properties as UML Observer Automata

4 Monitoring Activities

5 Application to the Illustrating Example

6 Conclusion

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 2 / 31

Introduction

Context

Observations
Increasing complexity and connectivity of embedded systems
⇒ Increasing exposure to potential software failures
⇒ Increasing difficulty to detect, understand, and fix software failures

Need for V&V at all design stages

Testing or proving that a system satisfies its expected properties
Possibly relying on environment abstractions
(inputs to consider and execution platform)

Need for runtime monitoring

Detecting safety property violations at runtime (with the actual environment)
Making it possible to trigger safe system recovery procedures

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 3 / 31

Introduction

Context

Observations
Increasing complexity and connectivity of embedded systems
⇒ Increasing exposure to potential software failures
⇒ Increasing difficulty to detect, understand, and fix software failures

Need for V&V at all design stages

Testing or proving that a system satisfies its expected properties
Possibly relying on environment abstractions
(inputs to consider and execution platform)

Need for runtime monitoring

Detecting safety property violations at runtime (with the actual environment)
Making it possible to trigger safe system recovery procedures

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 3 / 31

Introduction

Context

Observations
Increasing complexity and connectivity of embedded systems
⇒ Increasing exposure to potential software failures
⇒ Increasing difficulty to detect, understand, and fix software failures

Need for V&V at all design stages

Testing or proving that a system satisfies its expected properties
Possibly relying on environment abstractions
(inputs to consider and execution platform)

Need for runtime monitoring

Detecting safety property violations at runtime (with the actual environment)
Making it possible to trigger safe system recovery procedures

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 3 / 31

Introduction

Overview

Goal
Provide a technique to execute models on embedded targets with facilities to
perform model-checking and runtime monitoring on these models

Our previous work [Besnard et al., MODELS 2018]

1 Identified problems on classical model-checking approaches
2 Introduced a solution based on a model interpreter

In this work
3 Identify problems on classical monitoring approaches
4 Can we address these problems with the model interpreter approach?

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 4 / 31

Introduction

Overview

Goal
Provide a technique to execute models on embedded targets with facilities to
perform model-checking and runtime monitoring on these models

Our previous work [Besnard et al., MODELS 2018]

1 Identified problems on classical model-checking approaches
2 Introduced a solution based on a model interpreter

In this work
3 Identify problems on classical monitoring approaches
4 Can we address these problems with the model interpreter approach?

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 4 / 31

Introduction

Overview

Goal
Provide a technique to execute models on embedded targets with facilities to
perform model-checking and runtime monitoring on these models

Our previous work [Besnard et al., MODELS 2018]

1 Identified problems on classical model-checking approaches
2 Introduced a solution based on a model interpreter

In this work
3 Identify problems on classical monitoring approaches
4 Can we address these problems with the model interpreter approach?

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 4 / 31

Introduction

(1) Classical Approach with Model-checking

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 5 / 31

Introduction

(1) Classical Approach with Model-checking

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 5 / 31

Introduction

(1) Classical Approach with Model-checking

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 5 / 31

Introduction

(1) Classical Approach with Model-checking (Problems)

Problems: Two semantic gaps and an equivalence problem
caused by transformations of the design model into different languages

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 6 / 31

Introduction

(2) Our Approach with Model-checking [Besnard et al., MODELS 2018]

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 7 / 31

Introduction

(2) Our Approach with Model-checking [Besnard et al., MODELS 2018]

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 7 / 31

Introduction

(2) Our Approach with Model-checking [Besnard et al., MODELS 2018]

A unique definition of the language semantics
for verification activities and model execution

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 7 / 31

Introduction

(3) Classical Approach with Monitoring

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 8 / 31

Introduction

(3) Classical Approach with Monitoring

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 8 / 31

Introduction

(3) Classical Approach with Monitoring (Problems)

1 Semantic gap between monitors model and monitors code

2 Languages used to express monitors and design models are usually different

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 9 / 31

Introduction

(3) Classical Approach with Monitoring (Problems)

1 Semantic gap between monitors model and monitors code
2 Languages used to express monitors and design models are usually different

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 9 / 31

Introduction

(3) Classical Approach with Monitoring (Problems)

1 Semantic gap between monitors model and monitors code
2 Languages used to express monitors and design models are usually different

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 9 / 31

Introduction

(4) Our Approach with Monitoring

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 10 / 31

Introduction

(4) Our Approach with Monitoring

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 10 / 31

Introduction

(4) Our Approach with Monitoring

The same component interprets both design and monitors models:
1 No semantic gap
2 Only one language to express system and monitors models

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 10 / 31

Introduction

Table of Contents

1 Introduction

2 Illustrating Example

3 Expressing Properties as UML Observer Automata

4 Monitoring Activities

5 Application to the Illustrating Example

6 Conclusion

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 11 / 31

Illustrating Example

Table of Contents

1 Introduction

2 Illustrating Example

3 Expressing Properties as UML Observer Automata

4 Monitoring Activities

5 Application to the Illustrating Example

6 Conclusion

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 12 / 31

Illustrating Example

Cruise Control Overview

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 13 / 31

Illustrating Example

Cruise Control Overview

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 13 / 31

Illustrating Example

Cruise Control Overview

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 13 / 31

Illustrating Example

Cruise Control Interface Requirements

System requirements
1 After the detection of an event that turns the control loop off and until a

contrary event is sent, the cruise control interface should not try to send new
cruise speed setpoints.

2 The cruise speed setpoint should not be below 40 km/h or above 180 km/h.

3 When the system is engaged, the cruise speed setpoint should be defined.

Design model

Made using a UML subset that can be represented by:
Class diagram
Composite structure diagram
State machines

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 14 / 31

Expressing Properties as UML Observer Automata

Table of Contents

1 Introduction

2 Illustrating Example

3 Expressing Properties as UML Observer Automata

4 Monitoring Activities

5 Application to the Illustrating Example

6 Conclusion

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 15 / 31

Expressing Properties as UML Observer Automata

UML Observer Automata

Expressed directly in the design language

UML class + UML state machine with fail states
Extension of the expression language to read objects of the system and their
properties

Requirements on observer automata

Read-only access to system objects
UML observer state machines must be:

Deterministic to avoid introducing non-determinism in the observed system
execution
Complete to avoid blocking the system execution

Expressivity = safety properties (something bad happens)

Analysis of finite execution traces for monitoring (current run)
Verification problem reduced to a reachability problem (observer fail states)

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 16 / 31

Expressing Properties as UML Observer Automata

UML Observer Automata

Cruise control interface requirements
1 After the detection of an event that turns the control loop off and until a

contrary event is sent, the cruise control interface should not try to send new
cruise speed setpoints.

2 The cruise speed setpoint should not be below 40 km/h or above 180 km/h.
3 When the system is engaged, the cruise speed setpoint should be defined.

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 17 / 31

Expressing Properties as UML Observer Automata

UML Observer Automata (Interpretation for Analysis Activities)

Cruise control interface requirements
1 After the detection of an event that turns the control loop off and until a

contrary event is sent, the cruise control interface should not try to send new
cruise speed setpoints.

2 The cruise speed setpoint should not be below 40 km/h or above 180 km/h.
3 When the system is engaged, the cruise speed setpoint should be defined.

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 17 / 31

Monitoring Activities

Table of Contents

1 Introduction

2 Illustrating Example

3 Expressing Properties as UML Observer Automata

4 Monitoring Activities

5 Application to the Illustrating Example

6 Conclusion

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 18 / 31

Monitoring Activities

Synchronous Composition

Principle

Each time a transition of the system model is fired, each observer automaton also
makes a step to follow the system execution.

At each step, a synchronous
transition must be fired
A synchronous transition is
composed of:

One transition of the system
One transition per observer
automaton

The UML semantics
extension on which our
approach relies
Synchronous transitions are
built on-the-fly for an
efficient execution

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 19 / 31

Monitoring Activities

Synchronous Composition

Principle

Each time a transition of the system model is fired, each observer automaton also
makes a step to follow the system execution.

At each step, a synchronous
transition must be fired
A synchronous transition is
composed of:

One transition of the system
One transition per observer
automaton

The UML semantics
extension on which our
approach relies
Synchronous transitions are
built on-the-fly for an
efficient execution

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 19 / 31

Monitoring Activities

Runtime Monitoring with UML Observer Automata

Use the actual scheduling policy
(e.g., round robin on active objects)
Use the execution sequencer that
fires synchronous transitions in loop
Check the current state of each
observer at each step

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 20 / 31

Monitoring Activities

Runtime Monitoring with UML Observer Automata

Use the actual scheduling policy
(e.g., round robin on active objects)

Use the execution sequencer that
fires synchronous transitions in loop
Check the current state of each
observer at each step

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 20 / 31

Monitoring Activities

Runtime Monitoring with UML Observer Automata

Use the actual scheduling policy
(e.g., round robin on active objects)
Use the execution sequencer that
fires synchronous transitions in loop

Check the current state of each
observer at each step

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 20 / 31

Monitoring Activities

Runtime Monitoring with UML Observer Automata

Use the actual scheduling policy
(e.g., round robin on active objects)
Use the execution sequencer that
fires synchronous transitions in loop
Check the current state of each
observer at each step

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 20 / 31

Monitoring Activities

Additional Usage: Model-checking with UML Observer
Automata

Use an abstraction of the scheduling
policy to explore the whole model
state-space
The model-checker only has to use
a reachability algorithm

[] !|OBSERVER_FAIL(obs)|

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 21 / 31

Application to the Illustrating Example

Table of Contents

1 Introduction

2 Illustrating Example

3 Expressing Properties as UML Observer Automata

4 Monitoring Activities

5 Application to the Illustrating Example

6 Conclusion

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 22 / 31

Application to the Illustrating Example

Cruise Control Interface Model Under Verification

model under verification = system model + abstract environment model

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 23 / 31

Application to the Illustrating Example

Experiments

Experiments

Compare verification results obtained with:
LTL formulae

UML observer automata

Use to same UML observer automata to make runtime monitoring

1[Teodorov et al., 2017] https://plug-obp.github.io/
Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 24 / 31

https://plug-obp.github.io/

Application to the Illustrating Example

Experiments

Experiments

Compare verification results obtained with:
LTL formulae
UML observer automata

Use to same UML observer automata to make runtime monitoring

1[Teodorov et al., 2017] https://plug-obp.github.io/
Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 24 / 31

https://plug-obp.github.io/

Application to the Illustrating Example

Experiments

Experiments

Compare verification results obtained with:
LTL formulae
UML observer automata

Use to same UML observer automata to make runtime monitoring

1[Teodorov et al., 2017] https://plug-obp.github.io/
Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 24 / 31

https://plug-obp.github.io/

Application to the Illustrating Example

Model-Checking of the Level Crossing Model

Expression of properties as LTL formulae
1 [] ((|evOffSent| and !|evOnSent|) -> (!|evUpdateSetPointSent| W |evOnSent|))
2 [] (|intervalCS| or |unknownCS|)
3 [] (|ccsEngaged| -> !|unknownCS|)

Expression of properties as UML observer automata

Disengaged Engaged

Fail

Running

Fail

Running

Fail

Observer1 Observer2 Observer3

[evOffSent]

[evOnSent]

[evUpdateSetPointSent]
[!(intervalCS || unknownCS)] [ccsEngaged && unknownCS]

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 25 / 31

Application to the Illustrating Example

Results - Model-checking

LTL Formulae UML Observer Automata
Property 1 3 3

Property 2 3 3

Property 3 7 7

3: Property verified 7: Property violated

Analysis of the counter-example

Events resetCS and disengage could be processed in any order
⇒ Bad event interleaving

Model state-space

46,444,386 configurations linked by 82,734,350 transitions

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 26 / 31

Application to the Illustrating Example

Results - Monitoring

Initial Model Fixed Model
Property 1 l l

Property 2 l l

Property 3 l l

l: No failure detected l: Failure detected

Overhead of the monitoring infrastructure

Execution performance: +6.5%
Memory footprint: +1.2%

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 27 / 31

Application to the Illustrating Example

Results - Monitoring

Initial Model Fixed Model
Property 1 l l

Property 2 l l

Property 3 l l

l: No failure detected l: Failure detected

Execution performance

Estimation of the overhead:

overhead ≈ 6.5+
1

nb_ao

N∑
i=1

nb_statesi
nb_outgoingsi

Relative cost of observer automata decreases as the size of the system model
increases.

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 27 / 31

Conclusion

Table of Contents

1 Introduction

2 Illustrating Example

3 Expressing Properties as UML Observer Automata

4 Monitoring Activities

5 Application to the Illustrating Example

6 Conclusion

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 28 / 31

Conclusion

Conclusion

Problems
1 Semantic gap between monitors model and monitors code
2 Languages used to express monitors and design models are usually different

Proposed solution

Express properties as UML observer automata directly in the design language
Embed these monitors with our model interpreter

Results
1 No more semantic gap
2 Only one language to express system and monitors models

⇒ Helps engineers verify and monitor the embedded systems they are designing

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 29 / 31

Conclusion

Conclusion

Problems
1 Semantic gap between monitors model and monitors code
2 Languages used to express monitors and design models are usually different

Proposed solution

Express properties as UML observer automata directly in the design language
Embed these monitors with our model interpreter

Results
1 No more semantic gap
2 Only one language to express system and monitors models

⇒ Helps engineers verify and monitor the embedded systems they are designing

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 29 / 31

Conclusion

Conclusion

Problems
1 Semantic gap between monitors model and monitors code
2 Languages used to express monitors and design models are usually different

Proposed solution

Express properties as UML observer automata directly in the design language
Embed these monitors with our model interpreter

Results
1 No more semantic gap
2 Only one language to express system and monitors models

⇒ Helps engineers verify and monitor the embedded systems they are designing

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 29 / 31

Conclusion

Conclusion

Benefits
The same UML observer automata can be used for model verification and
runtime monitoring
The use of formal verification techniques by engineers is facilitated

Drawbacks
Only observed failures can be detected
Monitoring overhead (does not impede scalability)

Perspectives

Extend expressivity of guards in UML observer automata
Integrate other model-based specification formalisms

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 30 / 31

Conclusion

Conclusion

Benefits
The same UML observer automata can be used for model verification and
runtime monitoring
The use of formal verification techniques by engineers is facilitated

Drawbacks
Only observed failures can be detected
Monitoring overhead (does not impede scalability)

Perspectives

Extend expressivity of guards in UML observer automata
Integrate other model-based specification formalisms

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 30 / 31

Conclusion

Conclusion

Benefits
The same UML observer automata can be used for model verification and
runtime monitoring
The use of formal verification techniques by engineers is facilitated

Drawbacks
Only observed failures can be detected
Monitoring overhead (does not impede scalability)

Perspectives

Extend expressivity of guards in UML observer automata
Integrate other model-based specification formalisms

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 30 / 31

Conclusion

Thank you for your attention

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 31 / 31

Bibliography

Valentin Besnard, Matthias Brun, Frédéric Jouault, Ciprian Teodorov, and Philippe Dhaussy.
Unified LTL Verification and Embedded Execution of UML Models.
In ACM/IEEE 21th International Conference on Model Driven Engineering Languages and Systems
(MODELS ’18), Copenhagen, Denmark, October 2018.

OMG.
Unified Modeling Language, December 2017.
https://www.omg.org/spec/UML/2.5.1/PDF.

Ciprian Teodorov, Philippe Dhaussy, and Luka Le Roux.
Environment-driven reachability for timed systems.
International Journal on Software Tools for Technology Transfer, 19(2):229–245, Apr 2017.

Ciprian Teodorov, Luka Le Roux, Zoé Drey, and Philippe Dhaussy.
Past-Free[ze] reachability analysis: reaching further with DAG-directed exhaustive state-space
analysis.
Software Testing, Verification and Reliability, 26(7):516–542, 2016.

Valentin BESNARD (ESEO-TECH) MODELS’19 September 19th, 2019 1 / 1

https://www.omg.org/spec/UML/2.5.1/PDF

	Introduction
	Illustrating Example
	Expressing Properties as UML Observer Automata
	Monitoring Activities
	Application to the Illustrating Example
	Conclusion
	Appendix

