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Introduction

Context

Observations
Increasing complexity of embedded systems
Emergence of new needs and applications
Connection of these systems to networks (IoT)

Consequences on software programs
More prone to uncertain behaviors, security flaws, and design mistakes
More safety and security requirements

Consequence on software development
Increasing need of verification and validation
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Introduction

Some Problems

First issue: Semantic gap between design model and executable code.
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Introduction

Some Problems

Second issue: Semantic gap between design model and diagnosis model.
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Introduction

Some Problems

Third issue: An equivalence relation between verified formal models
and deployed code should be built, proven, and maintained.
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Introduction

Some Problems

Main cause of these problems: Multiple definitions of the modeling language semantics.
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Our Approach: A Unified Modeling Language Semantics
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Introduction

Our Approach: A Unified Modeling Language Semantics

Other tools are able to execute and analyze models:
GEMOC Studio [Bousse et al., 2016], Moliz [Mayerhofer et al., 2012], Moka [Revol et al. 2018],

GUML [Charfi et al, 2012], Unicomp [Ciccozzi, 2018], Mbeddr [Voelter et al., 2012], etc.
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Introduction

Our Approach: A Unified Modeling Language Semantics

A single implementation of the language semantics
for all activities: simulation, execution, and diagnosis.
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Introduction

Results

Simulation
Trace-based simulation

Execution
On bare-metal (without operating system) embedded targets
On desktop computers

Diagnosis
State-space exploration
Deadlock detection
Model-checking of Linear Temporal Logic (LTL) properties
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Illustrating Example

Level Crossing Overview

tcFar tcClose tcExit

Moving direction

gate
roadSign

railwaySign

Goal
Ensure safety during the passage of the train
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Illustrating Example

Level Crossing Model Requirements

Deadlock detection
Ensuring that the model is deadlock free.

System requirements
1 The Gate is closed when the Train is on the level crossing.
2 The light of the RoadSign is active when the Train is on the level crossing.
3 The Gate finally opens after being closed.
4 The light of the RoadSign is finally turn off after being activated.
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Illustrating Example

Level Crossing Model (Class Diagram)

system

SUS

+♦ gate : Gate
+♦ tcFar : EntranceTC
+♦ tcClose : EntranceTC
+♦ tcExit : ExitTC
+♦ controller : Controller
+♦ roadSign : RoadSign
+♦ railwaySign : RailwaySign

EntranceTC

-id : Integer

+«signal» activation()
+«signal» deactivation()

ExitTC

-id : Integer

+«signal» activation()
+«signal» deactivation()

Controller

-nbEngagedTrains : Integer

+«signal» entranceDetection()
+«signal» exitDetection()
+«signal» roadSignOn()
+«signal» roadSignOff()
+«signal» railwaySignOn()
+«signal» gateOpen()
+«signal» gateClosed()

RoadSign

+«signal» switchOn()
+«signal» switchOff()

Gate

+«signal» open()
+«signal» close()

RailwaySign

-id : Integer

+«signal» switchOn()
+«signal» switchOff()

roadSign

controller

tcFar, tcClose

controller

tcExit

controller

gaterailwaySign

controller

tcFar tcClose tcExit

Moving direction

gate
roadSign

railwaySign
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Illustrating Example

Level Crossing Model (Composite Structure Diagram)
tcFar tcClose tcExit

Moving direction

gate
roadSign

railwaySign
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Illustrating Example

Level Crossing Model (State Machines)
tcFar tcClose tcExit

Moving direction

gate
roadSign

railwaySign
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UML Execution Engine
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UML Execution Engine

UML Interpreter Design
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UML Execution Engine

Loading the Runtime Model at Compile-Time
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Diagnosis Activities

UML Model Diagnosis: Goals and Requirements

Our goals

Simulate the model

(with rollback for back-in-time simulation)
Explore the model state-space
Detect deadlocks
Verify formal properties via model-checking

Requirements to achieve these goals

Controllable InterpreterDiagnosis Tool

Get fireable transitions

Fire transition

Get configuration
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UML Model Diagnosis: Goals and Requirements

Our goals

Simulate the model (with rollback for back-in-time simulation)
Explore the model state-space
Detect deadlocks
Verify formal properties via model-checking

Requirements to achieve these goals

Controllable InterpreterDiagnosis Tool

Get fireable transitions

Fire transition

Get configuration

Set configuration

Evaluate Predicate

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 19 / 30



Diagnosis Activities

Diagnosis Design

Design of an application layer protocol over:
TCP connection
Serial connection (e.g., UART, USB)
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Diagnosis Activities

Diagnosis Design

A formal property consists of:
Atomic propositions (i.e., predicates related to model concepts)

→ Compiled into executable code by the converter
→ Evaluated by the controllable interpreter

Logical operators used to link atomic propositions together
→ Evaluated by the diagnosis tool (model-checker)
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Application to the Illustrating Example
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Application to the Illustrating Example

Level Crossing Model Under Verification
tcFar tcClose tcExit

Moving direction

gate
roadSign

railwaySign
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Application to the Illustrating Example

Model-Checking of the Level Crossing Model

Expression of Properties into LTL
1 [] !(trainIsPassing && gateIsOpen)
2 [] !(trainIsPassing && roadSignIsOff)
3 [] (gateIsClosed -> <> gateIsOpen)
4 [] (roadSignIsOn -> <> roadSignIsOff)

Expression of Atomic Propositions

trainIsPassing = |train.state == PASSING|
gateIsClosed = |gate.state == CLOSED|
gateIsOpen = |gate.state == OPEN|
roadSignIsOn = |roadSign.state == ACTIVE|
roadSignIsOff = |roadSign.state == INACTIVE|
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Application to the Illustrating Example

Experiments

Experiments

1https://plug-obp.github.io/
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Application to the Illustrating Example

Experiments

Experiments
Diagnosis of the level-crossing model on:

Desktop computer
STM32 discovery

1https://plug-obp.github.io/
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Application to the Illustrating Example

Experiments

Experiments
Using the two implementations of the event pool

the FIFO implementation that drops ignored events
the ordered list implementation that defers ignored events

1https://plug-obp.github.io/
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Application to the Illustrating Example

Results - Simulation
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Application to the Illustrating Example

Results - State-space Exploration

FIFO (drops) OrderedList (defers)
Nb configurations 173 122
Nb transitions 276 209

State-space graph with FIFO State-space graph with OrderedList
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Application to the Illustrating Example

Results - Deadlock Detection

FIFO (drops) OrderedList (defers)
Nb configurations 173 122
Nb transitions 276 209
Nb deadlocks 2 0

State-space graph with FIFO State-space graph with OrderedList
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Application to the Illustrating Example

Results - LTL Model-checking

FIFO (drops) OrderedList (defers)
[] !(trainIsPassing && gateIsOpen) 3 3

[] !(trainIsPassing && roadSignIsOff) 3 3

[] (gateIsClosed -> <> gateIsOpen) 3 3

[] (roadSignIsOn -> <> roadSignIsOff) 7 3

3: Property verified 7: Property violated

Execution performance

Verification of the 4 properties on a desktop computer1 in 1.71 seconds

1Intel R© CoreTM i7-8550U CPU at 1.80GHz with 4 cores, 16GB DDR4 2400MHz RAM, running a Linux OS
Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 27 / 30
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Conclusion

Conclusion

Our contribution
Use the same operational semantics implementation for execution and LTL verification
What is checked during model diagnosis is what is executed at runtime

Limitations
No support for UML activities
No evaluation of the resource overhead of the interpreter

Perspectives

Support multiple action languages (e.g., UML activities / Alf)
Integrate the tool with UML modelers (e.g., Papyrus) 1

Apply this approach to other domain-specific languages (e.g., Capella in Eclipse PolarSys)

1Preliminary study: https://plug-obp.github.io/experiments/
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Conclusion

Thank you for your attention
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