
Unified LTL Verification and
Embedded Execution of UML Models

ACM/IEEE 21th International Conference on Model Driven Engineering
Languages and Systems (MODELS ’18) in Copenhagen, Denmark

Valentin BESNARD 1 Matthias BRUN 1 Frédéric JOUAULT 1

Ciprian TEODOROV 2 Philippe DHAUSSY 2

1 ERIS, ESEO-TECH,
Angers, France

2 Lab-STICC UMR CNRS 6285,
ENSTA Bretagne, Brest, France

This work has been partially
funded by Davidson.

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 1 / 30

Table of Contents

1 Introduction

2 Illustrating Example

3 UML Execution Engine

4 Diagnosis Activities

5 Application to the Illustrating Example

6 Conclusion

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 2 / 30

Introduction

Table of Contents

1 Introduction

2 Illustrating Example

3 UML Execution Engine

4 Diagnosis Activities

5 Application to the Illustrating Example

6 Conclusion

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 3 / 30

Introduction

Context

Observations
Increasing complexity of embedded systems
Emergence of new needs and applications
Connection of these systems to networks (IoT)

Consequences on software programs
More prone to uncertain behaviors, security flaws, and design mistakes
More safety and security requirements

Consequence on software development
Increasing need of verification and validation

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 4 / 30

Introduction

Context

Observations
Increasing complexity of embedded systems
Emergence of new needs and applications
Connection of these systems to networks (IoT)

Consequences on software programs
More prone to uncertain behaviors, security flaws, and design mistakes
More safety and security requirements

Consequence on software development
Increasing need of verification and validation

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 4 / 30

Introduction

Context

Observations
Increasing complexity of embedded systems
Emergence of new needs and applications
Connection of these systems to networks (IoT)

Consequences on software programs
More prone to uncertain behaviors, security flaws, and design mistakes
More safety and security requirements

Consequence on software development
Increasing need of verification and validation

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 4 / 30

Introduction

Classical UML-based Approaches

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 5 / 30

Introduction

Classical UML-based Approaches

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 5 / 30

Introduction

Classical UML-based Approaches

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 5 / 30

Introduction

Classical UML-based Approaches

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 5 / 30

Introduction

Some Problems

First issue: Semantic gap between design model and executable code.

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 6 / 30

Introduction

Some Problems

Second issue: Semantic gap between design model and diagnosis model.

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 6 / 30

Introduction

Some Problems

Third issue: An equivalence relation between verified formal models
and deployed code should be built, proven, and maintained.

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 6 / 30

Introduction

Some Problems

Main cause of these problems: Multiple definitions of the modeling language semantics.

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 6 / 30

Introduction

Our Approach: A Unified Modeling Language Semantics

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 7 / 30

Introduction

Our Approach: A Unified Modeling Language Semantics

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 7 / 30

Introduction

Our Approach: A Unified Modeling Language Semantics

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 7 / 30

Introduction

Our Approach: A Unified Modeling Language Semantics

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 7 / 30

Introduction

Our Approach: A Unified Modeling Language Semantics

Other tools are able to execute and analyze models:
GEMOC Studio [Bousse et al., 2016], Moliz [Mayerhofer et al., 2012], Moka [Revol et al. 2018],

GUML [Charfi et al, 2012], Unicomp [Ciccozzi, 2018], Mbeddr [Voelter et al., 2012], etc.

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 7 / 30

Introduction

Our Approach: A Unified Modeling Language Semantics

A single implementation of the language semantics
for all activities: simulation, execution, and diagnosis.

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 7 / 30

Introduction

Results

Simulation
Trace-based simulation

Execution
On bare-metal (without operating system) embedded targets
On desktop computers

Diagnosis
State-space exploration
Deadlock detection
Model-checking of Linear Temporal Logic (LTL) properties

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 8 / 30

Illustrating Example

Table of Contents

1 Introduction

2 Illustrating Example

3 UML Execution Engine

4 Diagnosis Activities

5 Application to the Illustrating Example

6 Conclusion

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 9 / 30

Illustrating Example

Level Crossing Overview

tcFar tcClose tcExit

Moving direction

gate
roadSign

railwaySign

Goal
Ensure safety during the passage of the train

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 10 / 30

Illustrating Example

Level Crossing Model Requirements

Deadlock detection
Ensuring that the model is deadlock free.

System requirements
1 The Gate is closed when the Train is on the level crossing.
2 The light of the RoadSign is active when the Train is on the level crossing.
3 The Gate finally opens after being closed.
4 The light of the RoadSign is finally turn off after being activated.

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 11 / 30

Illustrating Example

Level Crossing Model (Class Diagram)

system

SUS

+♦ gate : Gate
+♦ tcFar : EntranceTC
+♦ tcClose : EntranceTC
+♦ tcExit : ExitTC
+♦ controller : Controller
+♦ roadSign : RoadSign
+♦ railwaySign : RailwaySign

EntranceTC

-id : Integer

+«signal» activation()
+«signal» deactivation()

ExitTC

-id : Integer

+«signal» activation()
+«signal» deactivation()

Controller

-nbEngagedTrains : Integer

+«signal» entranceDetection()
+«signal» exitDetection()
+«signal» roadSignOn()
+«signal» roadSignOff()
+«signal» railwaySignOn()
+«signal» gateOpen()
+«signal» gateClosed()

RoadSign

+«signal» switchOn()
+«signal» switchOff()

Gate

+«signal» open()
+«signal» close()

RailwaySign

-id : Integer

+«signal» switchOn()
+«signal» switchOff()

roadSign

controller

tcFar, tcClose

controller

tcExit

controller

gaterailwaySign

controller

tcFar tcClose tcExit

Moving direction

gate
roadSign

railwaySign

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 12 / 30

Illustrating Example

Level Crossing Model (Composite Structure Diagram)
tcFar tcClose tcExit

Moving direction

gate
roadSign

railwaySign

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 13 / 30

Illustrating Example

Level Crossing Model (State Machines)
tcFar tcClose tcExit

Moving direction

gate
roadSign

railwaySign

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 14 / 30

UML Execution Engine

Table of Contents

1 Introduction

2 Illustrating Example

3 UML Execution Engine

4 Diagnosis Activities

5 Application to the Illustrating Example

6 Conclusion

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 15 / 30

UML Execution Engine

UML Interpreter Design

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 16 / 30

UML Execution Engine

Loading the Runtime Model at Compile-Time

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 17 / 30

UML Execution Engine

Loading the Runtime Model at Compile-Time

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 17 / 30

UML Execution Engine

Loading the Runtime Model at Compile-Time

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 17 / 30

UML Execution Engine

Loading the Runtime Model at Compile-Time

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 17 / 30

UML Execution Engine

Loading the Runtime Model at Compile-Time

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 17 / 30

Diagnosis Activities

Table of Contents

1 Introduction

2 Illustrating Example

3 UML Execution Engine

4 Diagnosis Activities

5 Application to the Illustrating Example

6 Conclusion

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 18 / 30

Diagnosis Activities

UML Model Diagnosis: Goals and Requirements

Our goals

Simulate the model

(with rollback for back-in-time simulation)
Explore the model state-space
Detect deadlocks
Verify formal properties via model-checking

Requirements to achieve these goals

Controllable InterpreterDiagnosis Tool

Get fireable transitions

Fire transition

Get configuration

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 19 / 30

Diagnosis Activities

UML Model Diagnosis: Goals and Requirements

Our goals

Simulate the model (with rollback for back-in-time simulation)
Explore the model state-space
Detect deadlocks

Verify formal properties via model-checking

Requirements to achieve these goals

Controllable InterpreterDiagnosis Tool

Get fireable transitions

Fire transition

Get configuration

Set configuration

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 19 / 30

Diagnosis Activities

UML Model Diagnosis: Goals and Requirements

Our goals

Simulate the model (with rollback for back-in-time simulation)
Explore the model state-space
Detect deadlocks
Verify formal properties via model-checking

Requirements to achieve these goals

Controllable InterpreterDiagnosis Tool

Get fireable transitions

Fire transition

Get configuration

Set configuration

Evaluate Predicate

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 19 / 30

Diagnosis Activities

Diagnosis Design

Design of an application layer protocol over:
TCP connection
Serial connection (e.g., UART, USB)

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 20 / 30

Diagnosis Activities

Diagnosis Design

A formal property consists of:
Atomic propositions (i.e., predicates related to model concepts)

→ Compiled into executable code by the converter
→ Evaluated by the controllable interpreter

Logical operators used to link atomic propositions together
→ Evaluated by the diagnosis tool (model-checker)

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 20 / 30

Application to the Illustrating Example

Table of Contents

1 Introduction

2 Illustrating Example

3 UML Execution Engine

4 Diagnosis Activities

5 Application to the Illustrating Example

6 Conclusion

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 21 / 30

Application to the Illustrating Example

Level Crossing Model Under Verification
tcFar tcClose tcExit

Moving direction

gate
roadSign

railwaySign

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 22 / 30

Application to the Illustrating Example

Model-Checking of the Level Crossing Model

Expression of Properties into LTL
1 [] !(trainIsPassing && gateIsOpen)
2 [] !(trainIsPassing && roadSignIsOff)
3 [] (gateIsClosed -> <> gateIsOpen)
4 [] (roadSignIsOn -> <> roadSignIsOff)

Expression of Atomic Propositions

trainIsPassing = |train.state == PASSING|
gateIsClosed = |gate.state == CLOSED|
gateIsOpen = |gate.state == OPEN|
roadSignIsOn = |roadSign.state == ACTIVE|
roadSignIsOff = |roadSign.state == INACTIVE|

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 23 / 30

Application to the Illustrating Example

Model-Checking of the Level Crossing Model

Expression of Properties into LTL
1 [] !(trainIsPassing && gateIsOpen)
2 [] !(trainIsPassing && roadSignIsOff)
3 [] (gateIsClosed -> <> gateIsOpen)
4 [] (roadSignIsOn -> <> roadSignIsOff)

Expression of Atomic Propositions

trainIsPassing = |train.state == PASSING|
gateIsClosed = |gate.state == CLOSED|
gateIsOpen = |gate.state == OPEN|
roadSignIsOn = |roadSign.state == ACTIVE|
roadSignIsOff = |roadSign.state == INACTIVE|

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 23 / 30

Application to the Illustrating Example

Experiments

Experiments

1https://plug-obp.github.io/
Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 24 / 30

https://plug-obp.github.io/

Application to the Illustrating Example

Experiments

Experiments
Diagnosis of the level-crossing model on:

Desktop computer
STM32 discovery

1https://plug-obp.github.io/
Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 24 / 30

https://plug-obp.github.io/

Application to the Illustrating Example

Experiments

Experiments
Using the two implementations of the event pool

the FIFO implementation that drops ignored events
the ordered list implementation that defers ignored events

1https://plug-obp.github.io/
Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 24 / 30

https://plug-obp.github.io/

Application to the Illustrating Example

Results - Simulation

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 25 / 30

Application to the Illustrating Example

Results - State-space Exploration

FIFO (drops) OrderedList (defers)
Nb configurations 173 122
Nb transitions 276 209

State-space graph with FIFO State-space graph with OrderedList
Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 26 / 30

Application to the Illustrating Example

Results - Deadlock Detection

FIFO (drops) OrderedList (defers)
Nb configurations 173 122
Nb transitions 276 209
Nb deadlocks 2 0

State-space graph with FIFO State-space graph with OrderedList
Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 26 / 30

Application to the Illustrating Example

Results - LTL Model-checking

FIFO (drops) OrderedList (defers)
[] !(trainIsPassing && gateIsOpen) 3 3

[] !(trainIsPassing && roadSignIsOff) 3 3

[] (gateIsClosed -> <> gateIsOpen) 3 3

[] (roadSignIsOn -> <> roadSignIsOff) 7 3

3: Property verified 7: Property violated

Execution performance

Verification of the 4 properties on a desktop computer1 in 1.71 seconds

1Intel R© CoreTM i7-8550U CPU at 1.80GHz with 4 cores, 16GB DDR4 2400MHz RAM, running a Linux OS
Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 27 / 30

Conclusion

Table of Contents

1 Introduction

2 Illustrating Example

3 UML Execution Engine

4 Diagnosis Activities

5 Application to the Illustrating Example

6 Conclusion

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 28 / 30

Conclusion

Conclusion

Our contribution
Use the same operational semantics implementation for execution and LTL verification
What is checked during model diagnosis is what is executed at runtime

Limitations
No support for UML activities
No evaluation of the resource overhead of the interpreter

Perspectives

Support multiple action languages (e.g., UML activities / Alf)
Integrate the tool with UML modelers (e.g., Papyrus) 1

Apply this approach to other domain-specific languages (e.g., Capella in Eclipse PolarSys)

1Preliminary study: https://plug-obp.github.io/experiments/
Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 29 / 30

https://plug-obp.github.io/experiments/

Conclusion

Conclusion

Our contribution
Use the same operational semantics implementation for execution and LTL verification
What is checked during model diagnosis is what is executed at runtime

Limitations
No support for UML activities
No evaluation of the resource overhead of the interpreter

Perspectives

Support multiple action languages (e.g., UML activities / Alf)
Integrate the tool with UML modelers (e.g., Papyrus) 1

Apply this approach to other domain-specific languages (e.g., Capella in Eclipse PolarSys)

1Preliminary study: https://plug-obp.github.io/experiments/
Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 29 / 30

https://plug-obp.github.io/experiments/

Conclusion

Conclusion

Our contribution
Use the same operational semantics implementation for execution and LTL verification
What is checked during model diagnosis is what is executed at runtime

Limitations
No support for UML activities
No evaluation of the resource overhead of the interpreter

Perspectives

Support multiple action languages (e.g., UML activities / Alf)
Integrate the tool with UML modelers (e.g., Papyrus) 1

Apply this approach to other domain-specific languages (e.g., Capella in Eclipse PolarSys)

1Preliminary study: https://plug-obp.github.io/experiments/
Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 29 / 30

https://plug-obp.github.io/experiments/

Conclusion

Thank you for your attention

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 30 / 30

Bibliography I

Valentin Besnard, Matthias Brun, Philippe Dhaussy, Frédéric Jouault, David Olivier, and Ciprian Teodorov.
Towards one Model Interpreter for Both Design and Deployment.
In 3rd International Workshop on Executable Modeling (EXE 2017), Austin, United States, September 2017.

Valentin Besnard, Matthias Brun, Frédéric Jouault, Ciprian Teodorov, and Philippe Dhaussy.
Embedded UML Model Execution to Bridge the Gap Between Design and Runtime.
In MDE@DeRun 2018: First International Workshop on Model-Driven Engineering for Design-Runtime Interaction in Complex Systems,
Toulouse, France, June 2018.

Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer, Julien Deantoni, and Benoit Combemale.
Execution Framework of the GEMOC Studio (Tool Demo).
In Proceedings of the 2016 ACM SIGPLAN International Conference on Software Language Engineering, SLE 2016, pages 84–89, New York,
NY, USA, 2016. ACM.

Asma Charfi Smaoui, Chokri Mraidha, and Pierre Boulet.
An Optimized Compilation of UML State Machines.
In ISORC - 15th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing, Shenzhen,
China, April 2012.

Federico Ciccozzi.
Unicomp: A Semantics-aware Model Compiler for Optimised Predictable Software.
In Proceedings of the 40th International Conference on Software Engineering: New Ideas and Emerging Results, ICSE-NIER ’18, pages
41–44, New York, NY, USA, 2018. ACM.

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 1 / 3

Bibliography II

Alexandre Duret-Lutz and Denis Poitrenaud.
Spot: An extensible model checking library using transition-based generalized büchi automata.
In Proceedings of the The IEEE Computer Society’s 12th Annual International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems, MASCOTS ’04, pages 76–83, Washington, DC, USA, 2004. IEEE Computer Society.

Andreas Gaiser and Stefan Schwoon.
Comparison of Algorithms for Checking Emptiness on Büchi Automata.
In Petr Hlinený, Václav Matyáš, and Tomáš Vojnar, editors, Annual Doctoral Workshop on Mathematical and Engineering Methods in
Computer Science (MEMICS’09), volume 13 of OpenAccess Series in Informatics (OASIcs), pages 18–26, Dagstuhl, Germany, 2009. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

Frédéric Jouault, Ciprian Teodorov, Jérôme Delatour, Luka Le Roux, and Philippe Dhaussy.
Transformation de modèles UML vers Fiacre, via les langages intermédiaires tUML et ABCD.
Génie logiciel, 109, June 2014.

Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco Pol, Stefan Blom, and Tom Dijk.
Ltsmin: High-performance language-independent model checking.
In Proceedings of the 21st International Conference on Tools and Algorithms for the Construction and Analysis of Systems - Volume 9035,
pages 692–707, New York, NY, USA, 2015. Springer-Verlag New York, Inc.

Agnes Lanusse, Yann Tanguy, Huascar Espinoza, Chokri Mraidha, Sebastien Gerard, Patrick Tessier, Remi Schnekenburger, Hubert Dubois,
and François Terrier.
Papyrus UML: an open source toolset for MDA.
In Proceedings of the Fifth European Conference on Model-Driven Architecture Foundations and Applications (ECMDA-FA 2009), pages
1–4, 2009.

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 2 / 3

Bibliography III

Tanja Mayerhofer and Philip Langer.
Moliz: A Model Execution Framework for UML Models.
In Proceedings of the 2nd International Master Class on Model-Driven Engineering: Modeling Wizards, MW ’12, pages 3:1–3:2, New York,
NY, USA, 2012. ACM.

OMG.
Unified Modeling Language, December 2017.

Sebastien Revol, Géry Delog, Arnaud Cuccurru, and Jérémie Tatibouët.
Papyrus: Moka Overview, 2018.

Ciprian Teodorov, Philippe Dhaussy, and Luka Le Roux.
Environment-driven reachability for timed systems.
International Journal on Software Tools for Technology Transfer, 19(2):229–245, Apr 2017.

Ciprian Teodorov, Luka Le Roux, Zoé Drey, and Philippe Dhaussy.
Past-free[ze] reachability analysis: Reaching further with dag-directed exhaustive state-space analysis.
Software Testing, Verification and Reliability, 26(7):516–542, 2016.

Markus Voelter, Daniel Ratiu, Bernhard Schaetz, and Bernd Kolb.
Mbeddr: An Extensible C-based Programming Language and IDE for Embedded Systems.
In Proceedings of the 3rd Annual Conference on Systems, Programming, and Applications: Software for Humanity, SPLASH ’12, pages
121–140, New York, NY, USA, 2012. ACM.

Valentin BESNARD (ESEO-TECH) MODELS ’18 October 17th, 2018 3 / 3

	Introduction
	Illustrating Example
	UML Execution Engine
	Diagnosis Activities
	Application to the Illustrating Example
	Conclusion
	Appendix

