
Towards one Model Interpreter for
Both Design and Deployment

3rd International Workshop on Executable Modeling (EXE 2017)
co-located with MODELS 2017 in Austin, Texas, USA

September 18, 2017

Valentin BESNARD 1 Matthias BRUN 1 Philippe DHAUSSY 2

Frédéric JOUAULT 1 David OLIVIER 3 Ciprian TEODOROV 2

1TRAME team, ESEO, Angers, France

2Lab-STICC UMR CNRS 6285, ENSTA Bretagne, Brest, France

3Davidson Consulting, Rennes, France

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 1 / 20



Overview

1 A New Approach for Design and Deployment of UML Models
Context
Issues
Approach
Case Study
Results

2 Design of the Bare-Metal UML Interpreter
Interpreter Design
Communication Interface

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 2 / 20



Context

New generation of embedded systems and CPS
Emergence of new needs
Connected devices and collaboration on networks (IoT)

Consequences
Behavior of systems more uncertain
Systems more vulnerable to cyber attacks

Needs
Simulate, execute, and verify models at early design stage
Prevent introduction of bugs

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 3 / 20



Classical Approach and its Issues

Semantic gap: code and diagnosis results difficult to link to the user model (UML Model)
Equivalence: multiple separate definitions of the semantics language not proven
equivalent
Diagnosis understandability: results not expressed over UML or code
Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 4 / 20



Classical Approach and its Issues

Root cause of these problems (semantic gap, equivalence, and diagnosis
understandability): multiple implementations of UML semantics by transformations towards
different formalisms

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 4 / 20



Our Approach

Key points
Use of a single semantics implementation centralized in a UML model interpreter

Avoid multiple implementations of the language semantics by transformations for which we
do not know how to prove their equivalence

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 5 / 20



Our Approach

Solutions
Semantic gap and equivalence issues: avoided by having only one model
Diagnosis understandability issue: results directly linked to the UML model

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 5 / 20



Our Approach

A new issue
A lack of diagnosis tools for this approach that we addressed with an execution control
interface (similar to a debugger interface).

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 5 / 20



Case Study: Level Crossing

Goal
Ensure the safety of all road users during the passage of the train at the intersection of the
railroad with the road

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 6 / 20



Case Study: Level Crossing (Class Diagram)

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 7 / 20



Case Study: Level Crossing (Composite Structure Diagram)

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 8 / 20



Case Study: Level Crossing (State Machines)

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 9 / 20



Deployment

Deployment process
Design of the level crossing model in Eclipse UML (graphically with Papyrus or textually
with tUML)

Transliteration into C language as struct initializers
Model linked at build time with the interpreter

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 10 / 20



Deployment

Deployment process
Design of the level crossing model in Eclipse UML (graphically with Papyrus or textually
with tUML)

Transliteration into C language as struct initializers
Model linked at build time with the interpreter

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 10 / 20



Deployment

Deployment process
Design of the level crossing model in Eclipse UML (graphically with Papyrus or textually
with tUML)
Transliteration into C language as struct initializers

Model linked at build time with the interpreter

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 10 / 20



Deployment

Deployment process
Design of the level crossing model in Eclipse UML (graphically with Papyrus or textually
with tUML)
Transliteration into C language as struct initializers
Model linked at build time with the interpreter

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 10 / 20



Deployment

Targets
PC with a Linux operating system + TCP

stm32 on bare-metal + RS232
at91sam7s on bare-metal (microcontroller used by Lego NXT) + RS232 (target used only
for simulation)

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 11 / 20



Deployment

Targets
PC with a Linux operating system + TCP
stm32 on bare-metal + RS232

at91sam7s on bare-metal (microcontroller used by Lego NXT) + RS232 (target used only
for simulation)

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 11 / 20



Deployment

Targets
PC with a Linux operating system + TCP
stm32 on bare-metal + RS232
at91sam7s on bare-metal (microcontroller used by Lego NXT) + RS232 (target used only
for simulation)

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 11 / 20



Simulation

Connection possible over TCP or RS232 (via UART peripheral)
Four buttons for the four requests of the communication interface
Step by step or back-in-time execution available

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 12 / 20



Simulation

History: all states encountered are stored
Back-in-time execution: possibility to reload a previous state of the model

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 13 / 20



State-space exploration

Use of a breadth first search algorithm
Level crossing model: 1,825 configurations and 5,793 transitions

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 14 / 20



Interpreter Design

Three components
metamodel: definition of the language semantics
model: representation of the static part of the system
interpreter: representation of the dynamic part of the system and execution support

Key points
An interpreter deployable as OS task or process (e.g., Linux) or bare-metal (without OS)
Each instance of active classes represented as an active object
Each active object has:

An event pool to receive events
A current state
A store for its attributes

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 15 / 20



Interpreter Design

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 16 / 20



Interpreter Design

Semantics definition tUML
A subset of Eclipse UML including:

class diagram
state machines diagram
composite structure diagram

Effects and guards
Implemented as OpaqueBehaviors and OpaqueExpressions in a language that enables to:

send events
assign values to attributes

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 17 / 20



Communication Interface

Goal
Solve the lack of specific diagnosis tools by providing a generic API to control remotely the
execution of the interpreter

Four requests
Get configuration: collects the current configuration (memory state) of the interpreter.
Set configuration: loads a configuration as the current memory state of the interpreter.
Get fireable transitions: gets transitions that have their trigger and their guard satisfied
in the current state.
Fire a transition: fires a fireable transition of an ActiveObject.

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 18 / 20



Communication Interface

Possibility to connect existing tools
No needs to implement an ad-hoc toolbox
Existing tools used and approved for several years
No formation required for engineers

How to connect a diagnosis tool ?
Implement a TCP client and requests of the communication interface
Use the connection converter to make the conversion into serial frames

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 19 / 20



Conclusion

Our contribution
Use of a single semantics definition to overcome the semantic gap and the equivalence
problem between models
Implementation of a bare-metal UML interpreter
Definition of a communication interface to enable the use of existing tools and fix the lack
of diagnosis toolboxes specific to our interpreter
Remote control of the model execution with both a simulator and a state-space explorer

Perspectives
Implementation of formal properties verification
Connection of this interpreter with a model-checker
Application of this approach to other languages (e.g., DSLs)

Frédéric JOUAULT (ESEO) EXE 2017 September 18, 2017 20 / 20


	A New Approach for Design and Deployment of UML Models
	Context
	Issues
	Approach
	Case Study
	Results

	Design of the Bare-Metal UML Interpreter
	Interpreter Design
	Communication Interface


