
HAL Id: hal-02441878
https://hal.archives-ouvertes.fr/hal-02441878

Submitted on 16 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Verification of BPMN Models
Mihal Brumbulli, Emmanuel Gaudin, Ciprian Teodorov

To cite this version:
Mihal Brumbulli, Emmanuel Gaudin, Ciprian Teodorov. Automatic Verification of BPMN Models.
10th European Congress on Embedded Real Time Software and Systems (ERTS 2020), Jan 2020,
Toulouse, France. �hal-02441878�

https://hal.archives-ouvertes.fr/hal-02441878
https://hal.archives-ouvertes.fr

Automatic Verification of BPMN Models

Mihal Brumbulli∗, Emmanuel Gaudin∗, Ciprian Teodorov∗∗
∗PragmaDev, Paris, France

∗∗ENSTA Bretagne, Brest, France

Abstract—Models of complex systems and systems of systems
are described with NAF (NATO Architecture Framework) or
DoDAF (DoD Architecture Framework). Business Process Model
Notation (BPMN) is part of NAF and allows to describe the
behavior of the different participants in the model. This notation
is used by the French Army and its main suppliers to describe
the interactions between participants involved in a mission. It is
therefore important the models are correct. The VeriMoB project
is a research project financed by the DGA (Direction Générale de
l’Armement) which aims at developing a tool that will help users
to verify their BPMN models. This tool covers three main aspects:
static verification, interactive execution, automatic exploration
of the possible scenarios. This paper focuses on the automatic
exploration of the model with OBP technology coming from
ENSTA Bretagne research lab.

Index Terms—BPMN, Model Checking, Verification

I. Introduction

Business Process Model Notation (BPMN) is a notation
standardized by the Object Management Group (OMG) [1].
BPMN is a widely used language to describe interactions
between different participants in a complex organization. It
describes the possible sequences of tasks executed by several
participants to fulfill a specific mission. The BPMN language
offers a large set of very expressive operators enabling the
specification of complex process models. These models should
eventually be able to describe all possible situations and
interactions in the organization.

BPMN is used to describe a wide variety of systems such
as air traffic control, satellite constellations, or army forces
coordination. Inherent to the complexity of such systems, it is
paramount to ensure the functional correctness of the models.
To ensure the adequacy of the model to the studied mission,
it is common practice to gather the different stakeholders in
a room and to review the operational scenarios captured by
the model. This ensures that the BPMN specification correctly
captures the characteristics of the targeted system. During
these review sessions the model is typically corrected, and
refined until it captures unambiguously all stakeholder require-
ments. However, while absolutely necessary, these meetings
are time consuming and error prone mainly because the
model interpretation is performed by humans. To address
this problem we propose a tool enabling semantic-driven
model manipulation and verification, which ensures the model
correctness with respect to BPMN semantics.

The basic principles of the BPMN notation are very simple
and straight forward. The model describes a succession of
tasks realized one after the other. To represent alternative
execution paths, a gateway symbol is used to describe an

exclusive, an inclusive, or a parallel choice of path. Still, the
gateways can be quite complex and create unexpected behav-
ior when combined with each other. This is especially true
when implicit gateways are concerned, because they may be
misinterpreted by modelers. A hierarchy of scenario can also
be described using the call activities and information between
participants is exchanged through messages. Even though the
basic concepts are easy to understand there are a number of
subtle semantic variations in the standard that makes it tricky
to interpret correctly. Moreover, the information on which the
paths are selected depends on conditions that are described in
natural language. Thus, it is quite probable that the same model
might be interpreted differently by two different readers. A tool
that can interpret the notation and replay a set of scenarios
would be of great help to speed up the verification process
and settle down the real meaning of the model.

BPMN model correctness should be ensured along three
main axes: syntactic, semantic, and logic. From the syntactic
point of view, the model should adhere strictly to the stan-
dardized BPMN definition, which guarantees the grammatical
correctness and offers a sound basis for its semantic interpreta-
tion. From the semantic point of view, the interpretation of the
model should be captured formally and unambiguously, which
in turn enables semantically guided interactions with the model
(step-by-step execution, debugging, profiling, etc). Finally, at
the logic level, the model interpreted through the semantics
should correctly capture the mission of the system it models.
In the context of the VeriMoB project, we address these
correctness facets by: (1) performing static syntax checks, (2)
using a unique definition of the executable semantics for all
model analysis, i.e. interactive model animation, trace simu-
lation, and verification. For verifying the logical correctness
of the model we rely on the OBP model-checking framework,
which offers a semantics-agnostic LTL verification platform.
The main innovation of our approach stems from the direct
integration of our industrial-grade BPMN interpreter, capturing
the executable semantics, with an off-the-shelf model-checking
technology. The operational semantics of the BPMN notation
is unambiguously defined, and the integration of the OBP
model-checking tool offers an interesting add-on for the logic
verification of BPMN models.

This project was funded by the French Army (DGA) in
collaboration with Eurocontrol and Airbus DS who provided
some real use cases.

This paper will go through the work of the integration of
OBP tool within the VeriMoB project and the results that were
obtained.

II. RelatedWork

There is a substantial set of tools supporting BPMN. While
all of them provide the ability to edit the different diagrams,
some of them provide sharing capabilities dedicated to large
organizations, and a few provide execution facilities and
simulation features. It appeared the execution facilities that
are available are very poor and restrictive. The simulation
features are actually referring to statistical simulation that in-
cludes capabilities and statistical input information computed
automatically.

In [2] the authors evaluate the model against the real system
through history logs. Even though that is interesting to make
sure the system conforms to the process, it does not help to
verify the BPMN model is actually correct.

The Business Process Simulator BIMP is an on line simula-
tion tool supported by the University of Tartu and the Estonian
Research Council [3]. The model is uploaded and a simulation
scenario is defined. As a result the tool will estimate the
costs of the system and of each individual process, as well as
potential bottlenecks and resource utilization. This will help
to optimize the model but not verify it.

In [4] the authors investigate how to make sure a new
version of a BPMN model does not suffer from regression
through the use of model checking techniques. This process
will verify some properties are still valid when the model
is modified but that does not verify the model in the first
place against the same properties and it does not address the
verification of functional properties.

In [5] a list of BPMN simulation tools are evaluated to
optimize performance of the model. BIMP is considered
simplistic, Bizagi is considered user friendly, BPSim was
evaluated the most complete, BonitaSoft was in an early
phase of development, Visual Paradigm suffers from its UML
origin and has pretty limited possible inputs. Because they
are simulation tools to optimize performance the inputs are
statistical laws. Their unique goal is to optimize the throughput
of the model or the necessary re-sources.

In [6] the BPMN description is transformed to PIF (Process
Intermediate Format) which is then transformed to LNT (LO-
TOS New Technology) to be fed into CADP (Construction
and Analysis of Distributed Processes) verification tool from
INRIA. Even though the paper does not mention it, it is very
unlikely the BPMN semantic is respected through the multiple
transformations. In the end the limitation of the CADP tool
will end up with a very experimental result.

In [7] the authors present an overview of business process
models verification tools. Among the numerous references
in the paper two aspects of the model can be verified:
the syntactic correctness to prevent improper usage of the
modeling elements, the structural correctness to prevent wrong
dynamic behavior. For each verification tool the coverage of
the different aspects is described but the correctness of the
behavior is not addressed.

The investigation of the state of the art around BPMN
shows that the VeriMoB project addresses a unique verification

capability that no other tool offers. It might be interesting
to discuss the vocabulary used in this domain. Usually a
simulation is the execution of a model step by step. In BPMN
world, simulation is often understood as a statistical set of
inputs providing a statistical set of outputs in order to evaluate
the necessary resources for a whole system throughput. For
that reason we will preferably use the term execution instead
of simulation.

III. A Language Agnostic Verification Tool
Verification tools come with their own language and asso-

ciated semantics, which are different from the one that has
been used to model the system to be verified. To verify a
model, the usual process is to first translate the model to
the verification language. But since the underlying concepts
of the languages might not be fully aligned, the translated
model is a twisted version of the initial model, sometimes with
a lot of additional restrictions because of translation issues.
This renders the analysis of the verification results, during
diagnosis, very difficult.

Because of the inherent complexity of the modeled systems,
the verification tools are very complex. Whether based on ex-
haustive simulation or on symbolic resolution the complexity
leads to set a substantial number of restrictions on the model
itself. This could be on data types manipulated in the model
or some specific constructs that generate complexity.

In the end the verification tool runs on a twisted model
with data or construct restrictions. That substantially lowers
the value of the verification results that might be generated.

One of the innovative aspects of the OBP approach is that it
relies on an external model execution engine that is compliant
with the model semantic. OBP does not know anything about
the model; it does not even load the model. It leaves this task
to an external editor and execution engine. OBP focuses on
the analysis of the execution with respect to logical properties,
which themselves are grounded on the semantics defined by
the execution engine. In OBP the property to be verified is
a logical combination of elementary properties. The logical
structure is understood by OBP but the evaluation of the
elementary properties is delegated to the language executor.
To achieve such integration the connection between OBP and
the BPMN executor is based on the API shown in figure 1.

To control the model execution, during a verification run,
OBP can:
• retrieve the global state of the model execution;
• set the global state of the model execution;
• collect the possible next executable steps in a given state

of the model execution;
• execute one of the possible steps in a given model

execution state.
For the evaluation of a temporal logic property, the OBP

engine starts by requesting it from the executor. The property
written in either LTL or Büchi automata is decomposed in
elementary boolean properties to be evaluated by the executor.
Based on these interactions the verification engine is capable
of proving that the model satisfies the property, using standard

Fig. 1. VeriMoB internal architecture.

model-checking algorithms. If the property is not satisfied, a
counter-example is provided.

This approach offers a number of clear advantages, com-
pared to the approaches based on model transformation: it
assures the uniqueness of the language semantics between
interactive execution and model-checking, which relieves the
need of proving semantic equivalences; and the counter-
example, produced when the property is not verified by the
model, is expressed directly in terms of model concepts, which
can be simply replayed by the executor during diagnosis.
Furthermore, through the use of LTL and Büchi automata OBP
offers a standard property specification language, which can be
used either directly or as the transformation target for higher
level property specification, such as the Property Sequence
Charts [8].

IV. BPMN Executor
Each BPMN element in the model has a state of execution,

and depending on its state it may accept actions (i.e., transi-
tions in figure 1). An action can change the state of an element
during execution, and it can be either enable or disable. Since
an element can be enabled or disabled several times (i.e.,
many flows of execution can go through the same element),
each element has actually a list of states of execution. The
current execution state of a BPMN model is composed of the
execution states of all elements in the model. The following
execution states are possible for a BPMN element:
• None: the element does not accept any action from the

user, and it has never been enabled or disabled.
• Active: the element is waiting for either an enabling or

disabling action from the user.
• Ready: an enabling action was issued on the element, but

the element cannot be enabled yet because it depends on
the state of other elements.

• Enabled: an enabling action was previously issued on the
element, and all enabling conditions have been fulfilled
(i.e., the other elements it depends on are in the required
state).

• Disabled: a disabling action was issued on the element.
During execution the most recent state of the element is

displayed in color: blue for active, orange for ready, green for
enabled, and no color for none and disabled.

V. Level of Complexity

At first sight the level of complexity of a BPMN model
seems moderate. There are no data types in the model that
might create complexity because of the possible values each
variable could be assigned to. The scenario alternatives are
limited to the gateways. However, the gateways can be quite
complex and create unexpected behavior when combined with
each other.

A. Loops

Figure 2 shows an example of an infinite loop. The end
symbol is never reached by all flows due to the implicit
parallel forking gateway in task 2. This kind of construct poses
a serious issue for model checking, because at every loop
iteration a new model state is created by the BPMN executor.
As a result, the state space can be infinite, which is something
we don’t want in model checking.

Fig. 2. Infinite loop.

A simple modification of the model can solve the issue.
One possible solution in shown in figure 3 via the conditional
sequence flow. This makes the loop optional, and therefore
creates the possibility to interrupt the infinite loop.

Fig. 3. Conditional infinite loop.

However, this does not solve the problem for model check-
ing, because looping indefinitely remains a possible execution
scenario. For this reason we limit loop execution to one
iteration. We can do this because there are no data types
considered during model checking that can be affected by
iteration. The only thing affected by a loop is the coverage of
elements that form the looping path, hence a single iteration
(and no iteration) will give us full coverage of all possible
scenarios of execution.

B. Empty Pool Collaboration

Large models are described in several diagrams written by
different modelers. In these situations the pools that are defined
by the other modelers are represented by empty pools as shown
in figure 4. We call these empty pools black-boxes.

Fig. 4. Collaboration with empty pool.

During execution these black-boxes might be defined or
not, and even if they are defined one might not necessarily
want to execute them. When a black-box is undefined or not
executed its outgoing message flows can be always enabled
(i.e., sent), but a sent message may not be received. This is
another example of an infinite state space in model checking,
because every unreceived message creates a new execution
state. There is no solution in this case other than setting a
limit for the number on messages sent but not received. In
reality this limitation does not play an important role in model
checking because the redundant messages do not affect the
possible execution scenarios, i.e., scenario coverage does not
depend on redundant message flows.

VI. Property Sequence Chart

BPMN is a graphial notation that is used by domain
specialist which might not be familiar with modeling notations.

When it comes to expressing the properties of the process the
mathematical and algebraic notations should be avoided. Since
the BPMN executor produces execution traces based on the
MSC (Message Sequence Chart) standard [9] representation
that is quite easy to read, the use of the PSC (Property
Sequence Chart) [10] came as an obvious choice.

The PSC is a simple and expressive formalism that aims at
facilitating the non trivial and error prone task of specifying
temporal properties in a correct way and without expertise in
temporal logic. PSC is a language that extends a subset of
UML 2.0 Interaction Sequence Diagrams [11] or the ITU-
T Message Sequence Chart. Within the PSC language, a
property is seen as a relation on a set of exchanged system
messages, with zero or more constraints. PSC may be used to
describe both positive scenarios (i.e., the “desired” ones) and
negative scenarios (i.e., the “unwanted” ones) for specifying
interactions among the components of a system. For positive
scenarios, PSC allows to specify both mandatory and provi-
sional behaviours. In other words, it is possible to specify that
the execution of the system must or may continue to complete
the described interaction. Figure 5 shows the available symbols
in PSC diagrams.

Instances are represented as in MSC diagrams. The parallel,
alternative and loop operators are represented the same way
as the par, alt and loop in-line expressions in MSC diagrams
respectively. The relative time constraint has the same repre-
sentation and semantics as in MSCs. Messages in PSCs have
two representations:
• An arrow going from the sender to the receiver as in MSC

diagrams;
• A textual representation with the format:

<sender-instance-name>.<message-name>.<receiver-
instance-name>

This representation is used in constraints, explained be-
low.

Unlike messages in MSC diagrams, message arrows in PSC
diagram can be of three kinds:
• A regular message, identified by the prefix “e:” for the

message text, is a precondition for what follows.
• A required message, identified by the prefix “r:” for

the message text, is a message that must occur if the
preconditions are met. Required messages must always
appear after all regular messages.

• A fail message, identified by the prefix “f:” for the
message text, is a message that must not occur if the
preconditions are met. Fail messages may appear after
the regular messages.

When describing a property, the default ordering is the loose
ordering: anything can happen between a message specified
in the PSC and the one following it. For cases where a strict
ordering is necessary, i.e., when a message in the PSC must be
directly followed by the one following, the strict operator can
be used either on a message send or a receive. Figure 6 shows
an example where the answer message must strictly follow the
request message.

Fig. 5. PSC graphical notation.

Fig. 6. PSC strict operator example.

To be consistent with the BPMN notation the messages are
drawn with a dashed arrow in the MSC.

The PSC diagrams also allow to set constraints on the
messages. These constraints are shown as symbols at the
beginning or end of message arrows with an associated text.
These constraints can have 3 types:

• An unwanted message constraint denotes a set of mes-
sages where none should happen before or after the
message it is attached too, depending on whether it
appears at the beginning or the end of the arrow.

• An unwanted chain constraint denotes a sequence of
messages that should not appear as a whole before or
after the message it is attached to.

• A wanted message constraint denotes a sequence of
messages that must appear as a whole before or after
the message it is attached to.

Figure 7 shows a simple PSC example where a request from
a client to a server must get an answer as a reply, not another
request.

Fig. 7. PSC with alternatives.

VII. Generic Property Specification Language

The Generic Property Specification Language (GPSL) [12]
is the language used by OBP for specifying the properties that
should be verified during the analysis. Methodologically it is
orthogonal from the formalisms used for capturing the opera-
tional environment (xGDL scenarios [13]) and for taming the
state-space explosion problem during model-checking (state-
space decomposition, pruning through state-constraints - TLA
[14], etc.).

A. Structural Layer

Structurally a GPSL specification is composed from a set
of property definitions, according to the following syntax:

TABLE I
GPSL Propositional Operators

Operation Syntax Operation Syntax
negation ¬ f exclusion f ⊕ g
disjunction f ∨ g implication f → g
conjunction f ∧ g equivalence f ↔ g

identifier = expression

The expression of a property definition can reference a
previously defined definition through its name (identifier).

To simplify the expression of large formula GPSL uses “let
in’’ expression forms to introduce variables. For instance, in
the following listing, the variables v1 through vn can be used
to define subexpressions needed for building the expression
expr0.

let
v1 = expr1
...
vn = exprn

in
expr0

B. Atomic Propositions

The main characteristic of GPSL is its independence from
the formalism used for model-specification. To achieve this
independence relation, the GPSL language delegates the eval-
uation of the atomic propositions to the verification model
semantics (BPMN executor in our case).

Atomic proposition in GPSL are strings of characters en-
closed between pairs of ‘|’ (e.g., |string-of-characters|). Each
atomic proposition can be prefixed with two identifiers spec-
ifying the atomic proposition language and the ‘verification’
module on which it should be interpreted.

C. Propositional Layer

The propositional layer is used to define boolean expression
based on a) the true and false literals, b) the atomic proposi-
tions, and c) the previously defined identifiers.

Two expressions f and g can be combined using the propo-
sitional operators in Table I.

D. Büchi Automaton Layer

The GPSL language uses Büchi automata for expressing
temporal properties. In the language a Büchi automaton is seen
as a top level expression that can reference other definitions
without being referenceable. Moreover, the in clause of the let
construct is extended with the syntactical term for describing
the automaton. In this context an automaton is composed of
four parts:
• the set of states,
• the initial state(s),
• the accepting state(s), and
• the guarded transitions.

TABLE II
GPSL Temporal Operators

Operation syntax Operation syntax
next ©f weak until f W g
eventually ^f strong release f R g
always �f weak release f M g
strong until f U g

The set of states is defined by the keyword “states” followed
by a comma delimited list of identifiers (state names):

states := ’states’ identifier (’,’ identifier)*

The initial state(s) are introduced with the keyword “initial”
followed by a comma delimited list of state names:

initial := ’initial’ identifier (’,’ identifier)*

The accepting state(s) are introduced with the keyword
“accept” followed by a comma delimited list of state names:

accept := ’accept’ identifier (’,’ identifier)*

Each transition is specified by the source state, the guard
expression, and the target state, where the source and target
are state identifiers, and the guard expression is a propositional
logic expression composed using literals (true, false), atomic
propositions (|...|), propositional operators (!, and, or, ->, etc.),
and named variable references:

transition := identifier ’[’ expression ’]’ identifier

The automaton is defined by the following syntax:

automaton :=
states ’;’
initial ’;’
accept ’;’
transition (’;’ transition)*

E. LTL Layer

The Linear Temporal Logic support is provided by syn-
tactically extending the propositional layer with the temporal
operators defined in Table II. For verification the LTL expres-
sion are transformed to Büchi automata using the ltl3ba tool
[15].

VIII. Translating the properties

The PSC notation is based on the work initially started by
the University of l’Aquila [8]. The semantics of the PSC are
defined in terms of a transformation to Büchi automata. In our
case we have adapted the transformation to generate Büchi
automata conforming with the GPSL Büchi automaton layer.
As the PSC is a sequence of events, the idea is to build an
automaton that will follow up the different steps in the scenario
and introduce a state in between the events. In figure 8 the
client sends a request to the server that replies with an answer.

An obvious property for such a model would be that, if a
request is sent to the server, than an answer should be sent

Fig. 8. A simple BPMN client server example.

Fig. 9. A simple PSC for the client-server example.

back to the client. Figure 9 shows such a property with the
PSC notation, which would be translated in a Büchi automaton
as follows:

main_property =
let

server_answer_client = |+:E:/0:SEM_SYMB_21|,
client_request_server = |+:E:/0:SEM_SYMB_20|

in
states S3, S1, S4;
initial S1;
accept S3;
S1 [not client_request_server] S1;
S1 [client_request_server] S3;
S3 [not server_answer_client] S3;
S3 [server_answer_client] S4;
S4 [not client_request_server] S1;
S4 [client_request_server] S3

The server_answer_client and client_request_server are as-
signed some internal representation of the message sending
in the model. Then three states are defined: S3, S1, and
S4. S1 is set to be the initial state and S3 the accept state.
So if the automaton is in the S3 state at the end of the
exploration, that means the property has been satisfied (or
violated). The execution starts with S1 as a starting state. The
transition descriptions show that only client_request_server
can move the automaton from S1 to S3, this means that if
the client sends the request message to server, the property
automaton will go the S3 state. Once in state S3 the condition
server_answer_client leads to S4. This means that if the server
sent the answer message to the client, the property automaton
will go to the S4 state. If the second part of the property is
verified, the automaton will switch to non accept state.

IX. Example

A. Exploring the State-Space

Once the integration between the BPMN executor and OBP
was done, it was possible to explore all the possible execution
paths. A first, since there was no property defined yet, the
only result that could come out of such an exploration was
the number of possible configurations or possible states. This
basic information turned out to be informative of the model
complexity. If the number of possible execution paths is very
large compared to the model complexity, it probably means
that there is a mis-construct in the model that is creating such
complexity. A typical situation we had to deal with was the
implicit gateways. Figure 10 shows an excerpt of one of our
use cases coming from the army (the CAS - Close Air Support
model).

Fig. 10. Example of an exclusive implicit merge in the CAS model.

The forking gateway is an explicit parallel one, however the
merging one is an implicit exclusive gateway in the “Confirm
target” task. This means the two flows of execution generated
by the forking gateway will not wait for each other when
merging back. A simple exploration of such an example
ended up with more than 9,000 configurations! As such this
information demonstrates an mis-construct. After fixing the
model with a proper merging parallel gateway as shown in
figure 11, a new exploration led to only 38 configurations.

Fig. 11. Corrected CAS model with an explicit parallel merge.

A simple exploration can therefore generate a complexity
index of the model. If the index is too high it is quite likely
there is a mis-construct in the model.

B. Property Verification

The mis-construct in the CAS model can be better identified
via property verification. For this we defined the following
GPSL property:

// S -> "Describe situation" was enabled
S = |=:E:CAS:MegaId-331F39A752DD5FDC|

// T -> "Describe target" was enabled
T = |=:E:CAS:MegaId-331F39BE52DD603B|

// P -> "Authorize fire" becomes active
P = |+:A:CAS:MegaId-331F3B2A52DD67E0|

// Property: P if both S and T
main_property = <>P -> (!P U S) && (!P U T)

In a nutshell, the property says that “Authorize fire” should
be possible only if both “Describe situation” and “Describe
target” have been enabled (or done executing). Clearly such
property will not be satisfied when verified against the original
CAS model in figure 10, and OBP will generate the counter-
example that violates the property. The counter-example gen-
erated by OBP can be replayed by the BPMN executor, and
the result is shown in figure 12.

Fig. 12. Counter-example generated from violated property.

The figure shows that “Describe situation” has not been
enabled even though “Authorize fire” is active, hence confirm-
ing once again the presence of a mis-construct in the model.
Obviously, the same property is satisfied when verified against
the corrected model in figure 11. In this case no counter-
example is generated, and OBP will report satisfaction of the
property.

X. Outline

VeriMoB project was aiming at verifying BPMN models.
For that matter a set of tools have been developed including
a syntactic analyzer, a dynamic execution engine, a tracing
mechanism, and a property verification engine based on OBP.

Even though the BPMN semantic looks fairly simple at first
sight, it actually contains a very complex set of variations.
After analyzing the different industrial use cases involved in
the VeriMoB project, it turned out most of the models were
dynamically not correct.

This paper went through some BPMN constructs that we
encountered in the use cases, and explained how we did
address the common problem of potential state-space explo-
sion in model-checking. We then switched focus to property
verification by introducing PSC as a graphical alternative to
GPSL and the Büchi automaton for describing properties to
be verified by OBP. Even though the PSC is the easiest of
the three for describing properties, it is more limited due
to its notation, most notably the fact that it supports only
message flows. We intend to explore ways for addressing
PSC limitations in the future for bringing the it closer to
the expressiveness of GPSL and Büchi automaton. Finally,
the benefit of BPMN model verification was illustrated with
an example extracted from one of the industrial use cases
provided in the VeriMoB project.

References
[1] OMG, “OMG Business Process Model and Notation (BPMN). Version

2.0.2,” Object Management Group, OMG Standard, 2013, https://www.
omg.org/spec/BPMN/.

[2] O. Allani and S. A. Ghannouchi, “Verification of BPMN 2.0 Process
Models: An Event Log-based Approach,” Procedia Computer Science,
vol. 100, pp. 1064 – 1070, 2016.

[3] BIMP, “BIMP - The Business Process Simulator,” http://bimp.cs.ut.ee/,
2019.

[4] J. C. P. Aguilar, K. Hasebe, M. Mazzara, and K. Kato, “Model
Checking of BPMN Models for Reconfigurable Workflows,” CoRR, vol.
abs/1607.00478, 2016.

[5] A. P. Freitas and J. L. Pereira, “Process simulation support in BPM
tools: The case of BPMN,” http://hdl.handle.net/1822/39192, 2015.

[6] A. Krishna, P. Poizat, and G. Salaün, “VBPMN: Automated Verification
of BPMN Processes,” in 13th International Conference on integrated
Formal Methods (iFM 2017), 2017.

[7] A. Suchenia, P. Wisniewski, and A. Ligeza, “Overview of Verification
Tools for Business Process Models,” in Communication Papers of the
2017 Federated Conference on Computer Science and Information
Systems, FedCSIS 2017, 2017, pp. 295–302.

[8] M. Autili, P. Inverardi, and P. Pelliccione, “Graphical scenarios for
specifying temporal properties: an automated approach,” Automated
Software Engineering, vol. 14, no. 3, pp. 293–340, 2007.

[9] ITU-T, “Message Sequence Chart,” International Telecommunication
Union – Telecommunication Standardization Sector, ITU-T Recommen-
dation Z.120, 2011, https://www.itu.int/rec/T-REC-Z.120-201102-I/en.

[10] E. Gaudin and E. Brunel, “Property Verification with MSC,” in SDL
2013: Model-Driven Dependability Engineering, F. Khendek, M. Toeroe,
A. Gherbi, and R. Reed, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 19–35.

[11] OMG, “OMG Unified Modeling Language (UML). Version 2.5.1,”
Object Management Group, OMG Standard, 2017, http://www.omg.org/
spec/UML/2.5.

[12] OBP2, “OBP2,” http://www.obpcdl.org/, 2019.
[13] L. Le Roux and C. Teodorov, “Partially bounded context-aware verifi-

cation,” in Software Engineering and Formal Methods, P. C. Ölveczky
and G. Salaün, Eds. Cham: Springer International Publishing, 2019,
pp. 532–548.

[14] L. Lamport, Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002.

[15] T. Babiak, M. Křetínský, V. Řehák, and J. Strejček, “Ltl to büchi au-
tomata translation: Fast and more deterministic,” in Tools and Algorithms
for the Construction and Analysis of Systems, C. Flanagan and B. König,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 95–109.

https://www.omg.org/spec/BPMN/
https://www.omg.org/spec/BPMN/
http://bimp.cs.ut.ee/
http://hdl.handle.net/1822/39192
https://www.itu.int/rec/T-REC-Z.120-201102-I/en
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5
http://www.obpcdl.org/

	Introduction
	Related Work
	A Language Agnostic Verification Tool
	BPMN Executor
	Level of Complexity
	Loops
	Empty Pool Collaboration

	Property Sequence Chart
	Generic Property Specification Language
	Structural Layer
	Atomic Propositions
	Propositional Layer
	Büchi Automaton Layer
	LTL Layer

	Translating the properties
	Example
	Exploring the State-Space
	Property Verification

	Outline
	References

