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Abstract—Among formal methods, model-checking offers a
high-level of automation and can lower the cost of the verification
process. Two preliminary studies on FPGA model-checking show
a high-performance increase, thanks to the massive parallelism
and precise memory control opportunities. However, these ap-
proaches rely on HDL-based ad-hoc model encoding, and miss
the importance of decoupling the modeling language from the
verification core, which greatly limits their usability.

In this paper we propose Menhir, a new highly modular
hardware model-checker, inspired by the architecture of software
verification frameworks. Menhir is based on a generic language-
verification interface which isolates the modeling-language se-
mantics from the verification core, allowing their independent
evolution. Menhir opens the architecture to the whole spectrum
of modeling languages. Moreover, it proposes a polymorphic
verification core, which offers a continuum between partial and
exhaustive verification, with promising performances.

Index Terms—Model-checking, Verification Core, FPGA

I. INTRODUCTION

Formal verification offers the promise of guaranteeing the
system’s correctness through mathematical proofs. Among
formal verification methods, model-checking [1], [2] enacts
a proof-by-counterexample approach. Model-checking is a
generic and rather intuitive proof technique with good diag-
nosis capabilities, successfully applied to the verification of
critical hardware and software [3]. However, model-checking
is often challenged with the state-space explosion problem
[4]. Numerous techniques, such as symbolic model-checking,
partial-order reduction, and model abstraction, have been
proposed to reduce the impact of this problem [3]. Com-
plementary with these techniques, a research trend focuses
on the decomposition of the verification problem [5]–[8],
aiming at reducing the memory requirement at the expense
of higher verification time. Moreover, the emergence of low
cost parallel and distributed architectures have fueled, during
the last 15 years, the emergence of a large number of model-
checking algorithms targeting SIMD [9], shared memory [10],
and distributed systems [11].

Furthermore, two approaches for accelerating model-
checking using FPGAs have been proposed. The first approach
[12], inspired by the Murφ [13] tool, focuses on building
a safety model-checker on FPGA and has shown a 200X
speed improvement over Murφ. The second approach [14],
is a FPGA realisation of the swarm verification proposal by
Holzmann [5]. It achieves 900X speedup while reducing by
10X the power consumption. Sadly, their evaluation is based

on manually-coded ad-hoc VHDL models. No solution is
provided for the integration of the commonly used modeling
languages, like Murφ [13], Promela [15] or DVE specification
language [16]. Furthermore, their relative performances are
very difficult to compare, precluding incremental algorithmic
improvements. Consequently, despite the promising results,
the research community highly disregarded the usage of spe-
cialized circuits for accelerating model-checking.

Our claim is that the root cause of this failure lies in the
implicit interleaving of the modeling language semantics with
the verification algorithms. This led to an opportunistic and
unstructured research methodology which missed the extreme
importance, and the industrial relevance of high-performance
solutions for the model-checking problem.

In this paper we propose Menhir, a new modular hard-
ware model-checker, inspired by the architecture of highly
successful software model-checking frameworks [15], [17].
Firstly, Menhir decouples the verification core from the mod-
eling language semantics by introducing a generic language-
agnostic verification interface (GLI). This interface enables
the seamless integration of off-the-shelf specification-language
semantics with the verification core, thus opening the model-
checking core to the whole spectrum of specification and
modeling languages. Secondly, Menhir provides a polymor-
phic verification core, which offers a continuum between
exhaustive and partial safety verification algorithms. Moreover,
by isolating the language semantics, the proposed architecture
eases the objective evaluation of the improvements on the
verification core. Furthermore, Menhir is open to evolution. It
is intended to be a platform for fostering collaborative research
and development of hardware model-checking cores.

Current status: Menhir offers a pure hardware configura-
tion as well as a system-on-chip (SoC) configuration. The pure
hardware configuration relies on a VHDL-based GLI-specific
modeling language for capturing the verification problem. We
also propose a SoC solution, which relies on existing software
implementation of the modeling language. Currently, Men-
hir integrates two existing system specification formalisms:
a) DVE, an academic formal language, developed around
Divine tool [16] and also supported by LTSmin [17]; b) EMI,
a formal subset of the industrially used OMG UML standard
[18] designed for embedded executable specifications, cur-
rently supported by the OBP2 software model-checker [19].
The verification core integrates six verification algorithms,
ranging from exhaustive reachability, to bitstate-hashing and



bounded model-checking.
Our approach is evaluated a Zynq ZedBoard using a generic

benchmark encoded in all three modeling formalisms (GLI,
DVE, EMI). The results show that the pure hardware config-
uration is 50 times faster than the equivalent software setup.
The SoC configuration is slower but offers realistic modeling
capabilities.

Sec. II introduces the background and related works before
stating the problem addressed. Sec. III presents our contribu-
tion, the Menhir FPGA model-checker. Sec. IV discusses the
experimental setup and shows our evaluation results. Sec. V
concludes this paper giving some future research directions.

II. BACKGROUND AND PROBLEM STATEMENT

This section introduces the framework necessary for ap-
preciating our contribution, overviews the related work and
characterizes the problem addressed. The interested reader is
directed to [20] for a detailed description of model-checking.

A. Background

Among formal verification techniques, model-checking pro-
vides a generic and powerful automated proof technique based
on the analysis of the state-space underlying the execution
of a model. The applicability of this technique is based on
the hypothesis that the model, viewed as transition-system,
induces a finite state-space that can be exhaustively enu-
merated. The underlying verification problem is to check
if the model satisfies a specification. Both, the model and
its specification, are viewed as transition systems. Model-
checking verification consist in checking if the model includes
paths of the complemented specification. If the specification
is considered correct, its complement includes all unwanted
behaviors. Thus obtaining an empty intersection proves that
the model does not contains unwanted behaviors [20].

The specification language is typically based on ω-
automata, which can recognize infinite-words in ω-regular
languages. While this encoding is generic, in practice, how-
ever, non-deterministic finite automata (NFA) – recognizing
finite words – are typically used for the significant, practically
important, subclass of regular safety specifications. In this
case the verification procedure simply requires the computa-
tion of the state-space, by any reachability procedure while
looking for the unsafe states [20].

Based on the model-encoding, the model-checking can be
classified as offline of online. Offline verification, requires
the generation of the state-space before running the state-
checking routine. For online verification, the model is repre-
sented implicitly (by a program) and the verification procedure
interleaves the generation of the state-space with the state-
checking routine.

According to the internal representation of the state-space,
the model-checking algorithms are either explicit-state or
symbolic. Explicit-state approaches analyse the state-space
iteratively, one configuration at a time. Symbolic approaches,
manipulate compressed sets of states via satisfiability solvers.
Both approaches have their advantages and disadvantages

[21], however explicit-state model-checking seems to allow
easier binding of complex modeling languages [19], while
still allowing the use of symbolic algorithms via explicit-to-
symbolic conversions [17].

In this study we focus on explicit state online model
checking for regular safety specifications [22].

B. The Verification Algorithm

In the following, when referring to the states in the state-
space constructed during reachability, we will use the notion of
configuration, to lower the risk of confusion with the notion
of state in state-based modeling languages. Abstractly the set
of configurations (the state-space) can be seen as a finite type
C with each configuration an element of the type.

One key insight, that structures our approach, is that the
next-state generator component and the invariant checker are
intimately linked to the semantics of the input language.
Hence, in the following, we group them together to build the
model frontend. Without loosing generality, an implicit model
built over an arbitrary configuration type C can be defined
as the structure M(C), shown in Listing 1, where initial is
a nullary function returning the set of initial configurations,
next is a function returning the set of configurations reachable
from a given configuration, and is safe is a predicate over a
configuration that encodes a safety assertion. This abstraction
allows the verification algorithms to handle each configuration
as an opaque binary word, with its interpretation delegated
to the model frontend. Moreover, this representation abstracts
away the semantics of the verification problem, which is
encapsulated in the next function. Thus, the synchronous com-
position, between the model and the specification, needed for
the verification is also hidden from the algorithmic backend.

structure M (C : Type) :=
(initial : set C)
(next : C → set C)
(is_safe : C → bool)

Listing 1. Implicit representation of a model

The verification algorithm can be defined as the
safety checker(m : M) predicate, presented in Listing 2.
The algorithm progresses updating two sets: the known K and
the frontier F , both initially empty. The known set, stores
the states encountered. The frontier set contains only the
configurations that have been discovered recently, which are
not yet analysed. A configuration x is considered analysed
when its fanout has been computed (via the call to m.next(x)).
The algorithm starts by initializing a neighbours set N with
the initial states (line 4). The do while loop computes a fixed
point on the known set using the elements in the frontier set.
When the frontier set is empty all configurations have been
analysed. The closure loop firstly asserts that all neighboring
configurations are safe (line 6). If an unsafe configuration is
found, the algorithm terminates returning false (the model m
is not safe). If the configurations in N are safe, the known and
the frontier sets are updated (the simultaneous assignment ⇐
on line 8). The neighboring configurations are added to the



known. The new configurations are added to the frontier set.
Then a new neighboring set is computed for the next iteration
of the loop. Please note that the algorithm in Listing 2 is
explicitly kept abstract and simple (without any optimization)
to illustrate the minimum set of requirements both in terms of
data-structures and operations.

1 def safety_checker (m : M) : bool :=
2 K ← ∅
3 F ← ∅
4 N ← m.initial
5 do
6 if ∃ n ∈ N, ¬ m.is_safe(n) then
7 return false
8 K,F ⇐ K ∪N ,N \ K
9 N ←{ n | ∀ x ∈ F, n ∈ m.next(x) }

10 while F 6= ∅
11 return true

Listing 2. Generic safety verification function

C. Related Work

Despite the simplicity, and the linear complexity (in the
number of configurations) of the verification algorithm pre-
sented in the last section, in practice, model-checking is
confronted with very large state-spaces [4]. Numerous re-
search efforts addressed this problem [3]. Besides symbolic
approaches [23], most of these techniques focus on reducing
the complexity of the verification problems through symme-
try [24] or partial-order reduction [25] and through model
abstraction [26]. This study is focused on accelerating the
core verification algorithm. Nevertheless the approach is fully
compatible with these complexity reduction techniques, which
can be applied without restrictions in the model frontend
implementation.

Complementary research efforts focus on the decomposition
of the verification problem. These approaches trade-off either
the verification time [6]–[8] or the completeness [5] in ex-
change for smaller state-spaces during verification. In [6], [7]
the authors use verification guides to split the hard verifica-
tion instances in smaller problems, which can be discharged
independently. In [8] the authors propose decomposing the
specification into multiple smaller properties, which reduce
the state-space. Swarm verification [5] arbitrarily dispatches
the configurations to multiple instances of the verification
algorithm. Each instance uses a randomized access to the
frontier set to explore different parts of the state-space. To
further reduce the memory requirements the known set is
represented using a probabilistic data-structure, a bloom-filter,
approach known in the literature as bitstate-hashing [27]. This
approach trades-off the completeness proof, ensuring only
a high probability of full coverage. Our approach supports
bitstate-hashing and the verification core could be replicated
to implement swarm verification.

Bounded model-checking (BMC) [28], [29] also trades-off
completeness in exchange for manageable state-space. This
approach relies on the observation that a breadth-first search
on a tree-like interpretation of the state-space requires only

the storage of 2 layers of the state-space (instead of d-layers,
where d is the diameter of the state-space). However, this
optimization comes at the cost of loosing termination, which is
restored by limiting the number of layers analysed (typically
an arbitrary bound). Thus, similarly to swarm and bitstate-
hashing, BMC also looses the completeness, which can only
be established by proving that the bound chosen is sufficient
(at least equal to the diameter for reachability). Our verification
core can be configured to perform an explicit-state BMC
procedure.

The ever increasing cost of verification time along with
the emergence of low cost parallel and distributed architec-
tures has pushed the community to studying parallel model-
checking solutions. Numerous works targeted SIMD architec-
tures [9], multi-core shared memory [10], distributed systems
[11]. Besides these, two approaches [12], [14] rely on building
dedicated hardware verification cores on reconfigurable FPGA
architectures.

The first approach [12], named PHAST, focuses on building
a pipelined model-checker for safety specifications. Inspired
by the Murpφ software model-checker [13], this approach
implements a probabilistic verification procedure based on
hash-compaction [30]. The particularity of this approach is
that the known set does not store the full configurations
but only a hash signature of the them, which reduces the
memory pressure. In the initial 2008 paper [12], the authors
claim a 200X performance improved over Murφ. However,
in the master thesis of the first author, published in 2012
[31], the performance improvement decreased to 30X, which
is very impressing still. Currently, the Menhir core does not yet
support the hashcompaction algorithm, however the genericity
of the core allows its implementation while benefiting from
the integrated modeling languages and the existing pipeline
structure.

More recently, in 2018, a new hardware core for safety
model-checking was proposed [14]. This time inspired by the
swarm verification procedure [5] of the SPIN model-checker
[15]. Implemented using C-based High-level Synthesis (HLS),
FPGASwarm dispatches randomized partitions of the state-
space to a swarm of 40 verification cores. The results achieve
900X speedup and 10X lower power consumption against
SPIN running on a 24 core supercomputer. In the context of
this paper we focused on the creation of generic verification
core, which could be replicated to realize the swarm approach.

D. Problem Statement

These research efforts on hardware model-checking traded-
off the completeness of the verification for lower memory
pressure, proposing probabilistic verification procedures. Thus,
currently we observe the lack of research on accelerating
exhaustive safety model-checking.

Moreover, both PHAST [12] and FPGASwarm [14] based
their evaluation on manually-coded ad-hoc models (in VHDL),
without providing any solutions for the integration of com-
monly used modeling languages, like Murφ [13], Promela
[15] or DVE specification language [16]. This emphasizes the



Fig. 1. Architecture overview. The dashed boxes represent placeholders for
specific modules: language specific components on the model fronted, and
Known and Frontier set implementations in the storage backend. The blue
rectangles are internal components of the Menhir controller. The arrows show
the flow of configurations (thick arrows) and control signals.

need for creating semantic bridges between these verification
cores and the modeling languages used by the community.

Furthermore, while both approaches encapsulate the next-
state generation and the state-validation in separate modules,
they lack the definition of a generic interface, which could
enable the independent evolution of the verification backend
from the model frontend. Moreover, they do not exploit at
all the algorithmic variability.

III. MENHIR: A MODULAR HARDWARE MODEL-CHECKER

This section overviews the architecture of Menhir, presents
the model-algorithm interface and the variability of the veri-
fication core.

A. Overview

The Menhir approach splits the modeling semantics from
the verification engine and promotes a modular algorithmic
backend. Exploiting the algorithmic variability enables mor-
phing the verification core to implement multiple verification
algorithms. The verification engine is implemented as a dedi-
cated hardware design, which interacts through well specified
interfaces with the executable models under verification.

The model-checker in organized in two parametric layers,
Fig. 1. The Model Fronted layer encapsulates the Next State
Generator and the Invariant Checker behind a Generic Lan-
guage Interface (GLI), which mediates the dialog with the
verification core. The verification core itself is decomposed in
two parts: the controller and the storage backend. The Menhir
controller itself has three modules: a) the Next Controller,
which mediates the access to the GLI interface; b) the
Scheduler, which forwards the newly discovered configura-
tions to the frontier set; and c) the Termination checker,
which monitors the progression of the algorithm deciding
the termination conditions. The Storage Backend harbors the
known and frontier set representations. The controller accesses

these representations through two generic interfaces: IKnown
and IFrontier.

The operations apply to the configurations in a pipelined
fashion. Fig. 1 shows the path of a configuration (thick black
arrows). A new configuration n is generated by the next state
generator, which produces either an initial configuration (at
the beginning) or the next from a source configuration x. The
new configuration is fed through the invariant checker which
asserts the is safe predicate. If the configuration is safe, then
it is forwarded to the Known set. If the configuration is not
already included in the known, it is added and passed to the
scheduler, which adds it to the Frontier set F . Based on the
order imposed by the frontier set implementation, a frontier
configuration is selected as source and sent to the next state
generator as soon as it finishes producing the neighbours of
the previous source. To guarantee termination, each of the
pipeline blocks can send a signal to the termination checker
which propagates the results at the end of the algorithm. While
the algorithm in 2 terminates only in two cases, namely if an
unsafe state is found, or if the frontier set is empty, the end
of the verification task is a bit more complex in hardware.
The pipelined implementation involves several states being
processed at the same time. Then the termination is occurring
only when the Frontier set is empty, and no states are being
processed by the Model Frontend, nor by the Known set.

B. Isolating The Model From The Verification Core
The conceptual organization presented in the Listing 1

(Section II) already poses a good basis for achieving the model
isolation. It hides the modeling and specification language
details as well as their synchronous composition behind a func-
tional interface. Composed of three functions, this interface
can directly be invoked by the verification algorithm (shown
in Listing 2).

However, the high cost of invoking hardware functions
pushes us to refine this interface. Each call of the is safe pred-
icate needs sending a full configuration from the verification
core to the model frontend to retrieve one bit of information
in exchange. Inlining this call, in the new model structure,
reduces the communication cost to only one bit.

structure MH (C : Type) :=
(initial : set (C × bool))
(next : C → set (C × bool))

Listing 3. Implicit representation of a model

The proposed refinement, shown in Listing 3, inlines the
calls to the is safe function in the initial and next calls. This
results in new return types for these, a product type (C×bool)
composed of the configuration (C as previously) and a is safe
bit (bool type).

Listing 4 shows the mathematical transformation, which can
be applied to any model following the previous model structure
(Listing 1) to obtain the new one Listing 3. The new initial
set is obtained by adding the result of m.is safe to each initial
configuration i. For each source s, the new neighborhood set
is the couple (n, m.is safe(n)) for all n in the m.next(s).



Fig. 2. The GLI signals between the model frontend and the verification core

def M2MH (m : M C) : MH C :=
〈initial ← { (i, m.is_safe(i)) |
∀ i ∈ m.initial },

next ← λ s, { (n, m.is_safe(n)) |
∀ n ∈ m.next(s) }〉

Listing 4. Conversion between M and MH

Fig. 1 already eluded to this transformation when showing
the invariant checker on the configuration pipeline. Basically
each produced state gets annotated with the is safe bit. This
bit is sent through the GLI interface to the termination checker
(the red arrow in Fig. 1) which stops the analysis if the signal
is not asserted (a violation of the property was found). Please
note that for safety model-checking this bit is transient, and
not stored in the state-space.

Fig. 2 shows the hardware signals of the GLI interface,
which implement the model in Listing 3. Conceptually this
interface establishes a communication channel between the
model frontend and the verification core, which uses streams to
implement the access to the initial and next sets. This channel
transfers the new configurations (target bus) along with the
is safe bit. When the initial enable/next enable signal is
asserted the model fronted produces a new configuration
couple and asserts the valid signal. For the last configuration
in the initial/next set the is last signal is asserted. The source
state s, needed for computing the next set, is sent along the
source bus when the next enable signal is asserted. Due to
the exclusive access to the initial and the next sets (the initial
set is produced before all the next sets), the GLI interface uses
the same communication channel from the model frontend to
the verification core for both transfers.

Furthermore, this structure of the GLI also signals the
presence of deadlocks in the model, which can lead to ter-
mination if the deadlock-checking option is enabled in the
Termination Checker. A deadlock exists in the model either
trivially, if the model does not have any initial states (m.initial
= ∅), or if the next set of a given configuration s is empty
(m.next(s) = ∅). These conditions are signaled by the model
frontend by asserting the is last signal without (at the same
time) asserting the valid signal.

To allow the use of existing modeling language, the model-
frontend presented in Fig. 2 can encapsulates a processor on
which the language runtime can be executed. In this SoC setup,
the processor is bound with the Menhir core through an AXI4

Fig. 3. The variability model of the Menhir core

bus, which exposes logic registers in processor’s addressable
space. The software running on the processor is reduced to
a minimal driver mapped directly to the hardware GLI. This
driver offers an adaptation layer, based on Listing 3, to wrap
existing modeling language runtimes.

C. Exploiting Algorithm Variability in the Verification Core

Besides the model variability fully exposed by our generic
language interface the high-level safety verification algorithm,
illustrated in Listing 2, exposes data structure variability.
Historically, these have been exploited by software model-
checking frameworks, such as SPIN [15], [17], [23], to achieve
tremendous results in terms of verification scalability and
speed. In this section we focus on four simple data structures
that represent the backbone of more than 6 explicit-state
model-checking algorithms.

Fig. 3 illustrates a variability diagram that characterizes the
Menhir core implementation. Menhir has 3 main variability
axes (the GLI, the Known set and the Frontier set) and
two dependent features (the Bound and the Completeness).
The algorithm performs an exhaustive search only if the
known implements a set data-structure and the search is not
bounded (the Exhaustive condition in the figure). A partial
analysis is performed if either the known is represented using a
probabilistic data-structure (a bloom filter) or if the analysis is
bounded (typically depth bounded). Note that, in this study, we
restrict the bounded analysis to a FIFO based depth-bounded
algorithm (Bounded =⇒ FIFO), leaving other approaches,
such as [29], for future work.

1) Known Set Variants: The Known set is typically imple-
mented using an associative memory (a hashtable), which of-
fers an amortized constant time addition cost. To accommodate
an iterative state-space traversal discipline, the Known exposes
an add if absent function [10], which adds a configuration
to the set if not already included and returns either the
configuration added or null, if the configuration was already
in the set. A probabilistic bloom filter implementation of the
Known set interface morphs the verification algorithm to the
bitstate-hashing approach [27], which stores only one bit per
state in the state-space thus achieving high-scalabily for bug
detection.



2) Frontier Set Variants: The Frontier set is implemented
either as a stack (LIFO) or a first-in-first-out (FIFO) queue.
According to the frontier set discipline, the verification al-
gorithm analyses the state-space either in a depth-first or a
breadth-first order. The scheduler adds a configuration c to
the frontier only if it is new (add if absent(c,K) 6= null). The
Next Controller removes an element from the frontier when
querying the Model Frontend for its neighborhood.

3) Bounded Model-Checking: The four variants of the ver-
ification core are augmented with two supplementary variants,
by introducing the bound parameter, a layered FIFO and the
possibility to clear the contents of the known set. In this case
the verification core performs an explicit-state BMC algorithm,
with or without bitstate-hashing. In this configuration, the core
stores only two layers of the state-space in memory, the current
layer in the FIFO-frontier and the next layer in the Known set.
This behavior is obtained by storing the Frontier in a dual-
staged FIFO. While the first stage stores the remaining states
from the current layer, the second stage stores the frontier
states of the next layer. Once the current layer is fully explored
(ie. the first stage is empty), the Known set is cleared, and the
FIFO stages are swapped.

The current version of the Menhir model-checker exposes
the GLI interface, which eases the integration of modeling
frontends. Menhir implements all 6 variations of the safety
algorithm described in this section, which shows the potential
of creating an infrastructure for structuring the research efforts
on hardware model-checking.

IV. EXPERIMENTAL RESULTS

After presenting the evaluation setup, this section discusses
the results obtained for six of the 18 possible variations (6
algorithms × 3 modeling languages).

A. Evaluation Setup

To evaluate our approach we have implemented the GLI-
software interface for both the UML and DVE specification
language. These two execution runtimes run on an ARM
processor and are connected with the Menhir core through
an AXI4 bus. In addition, we have used the VHDL GLI
interface as a domain-specific language for implementing the
full hardware configuration.

1) UML: has been chosen because it is a high-level speci-
fication language, commonly used in the industry. Out of the
numerous research efforts that focus on model-checking of
UML models, the EMI approach proposed in [19] offers an
executable runtime, which can be executed on an embedded
processor and is supported by the OBP2 model-checker. More-
over, the model interpreter features an controllable execution
API that was used for the implementation of the GLI interface.

2) The DVE Specification Language: has been chosen as
a typical model-checking language; being used by two high
performance model-checking tools, Divine [32] and LTSmin
[17]. From a modeling perspective Divine can be seen as a
lower-level language when compared to UML. In this case
we have based the implementation of the GLI interface on

the Divine-to-C code generator used by Divine tool. This
generator produces optimized C code compliant with the
Divine CESMI interface, which is functionally similar to the
GLI interface presented in the Listing 1.

3) The VHDL-based GLI: is the low-level interface exposed
by the Menhir core. Implementing the verification model as
a VHDL circuit targeting this interface eliminates any costly
indirection that exists in the previous cases. However, from a
modeling perspective, this interface is very low-level compared
to UML and DVE languages.

a) Evaluation model.: The results presented are based
on a representative parametric model, illustrated in Listing 5.
The configuration of the model is an array of n bits. The
initial configuration, shown by the constant function initial,
assigns 0 to all configuration bits. The next function return
the set of configurations obtained by flipping one bit in the
source configuration s. While simple, this model exhibits an
exponential state-space (2n configurations), the worst case for
a n-bit configuration. Moreover, the transition structure of
the nbits model exposes a high-degree of non-determinism,
for each configuration s there are n target configurations.
Furthermore, for the purpose of the evaluation we assume that
all states are safe, which induces the worst case execution
time for model-checking (if no violation is found, the analysis
continues for all the 2n configuration).

def nbits (w ∈ N+) : MH C :=
〈initial ← { (n,T)|∀ i∈[0,w), ni=0 },
next ← λs, { (n,T)| ∃ i∈[0,w), ni=¬si }〉

Listing 5. Conversion between M and MH

For the purpose of the evaluation, the nbits model has been
implemented in all three specification formalisms supported
by the Menhir core (UML, DVE, and VHDL-based GLI).

b) Evaluation Platform: The evaluations where per-
formed on a Zynq XC7Z020-CLG484 platform. The SoC
configuration used one core of the ARM processor running
at 667 MHz. OBP2 EMI [19], used as baseline for UML, was
executed using OpenJDK v1.8.0, on the Zynq platform using
Debian 8. Divine v3.3.3 [32], used as baseline for DVE, was
cross-compiled and executed on the Zynq platform using gcc
5.4. The Menhir core was synthesized using Vivado 2018.3
and runs at 100 MHz frequency.

B. Evaluation Results

In the following, we show the performance results obtained
on 6 amongst the 18 variations of our platform. The Exhaustive
BFS results illustrate the performance of the Menhir core
with the three modeling languages against the two baselines.
The BMC and bitstate hashing configurations show the results
on the VHDL-based GLI implementation of the nbits model.
Lastly, we show the FPGA resource utilisation of the verifi-
cation core in these experiments.

1) Exhaustive BFS: Fig. 4 shows the performance gain
obtained for exhaustive breadth-first search with respect to
Divine and OBP2 EMI. Seven versions of the nbits model



1

10

100

1000

9 10 11 12 13 14 15

Divine / DVE-SoC OBP2 EMI / EMI-SoC Divine / GLI-H

Fig. 4. SoC results vs Divine for DVE and OBP for UML

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ti
m

e 
(m

s)

Exhaustive BFS BMC Bitstate BMC+Bitstate_12 BMC_16+Bitstate

Fig. 5. Partial verification execution time.

where considered ranging from 9 bits to 15 bits configurations.
The black line represents the ratio between the running times
of OBP2 EMI versus the EMI-SoC configuration using the
UML model. In this case the performance gain ranges between
36X to 22X. The dashed line represents the ratio between the
running times of Divine versus the DVE-SoC configuration
using the DVE model. In this case the performance gain ranges
between 23X to 5X. The gray line show the performance gain
obtained by the full hardware configuration (VHDL-based GLI
model) versus Divine. In this case the performance gain ranges
between 296X to 50X.

The high performance gains for smaller models, in Fig. 4
illustrate the faster initialization time of the Menhir verification
core with respect to the respective software. As the model
gets bigger, however, these differences are less visible, and
the performance gain reaches a plateau. The results show
the gain is strongly dependent on the performance of the
model-execution engine, DVE engine is faster than UML
engine on the CPU execution. The VHDL implementation
of the nbits model is the fastest, achieving a throughput of
one configuration per cycle. In our experiment, the UML
verification (in the SoC configuration) is in average 14 times
slower than the DVE SoC verification. However, note that in
their respective software configurations the UML verification
with OBP2 is 52 times slower than DVE with Divine.

2) Non-exhaustive: Fig. 5 illustrates the results on a 15 bits
model in the context of three non-exhaustive algorithms. The
red line references the analysis time of the exhaustive BFS
analysis (as illustrated in Fig. 4).

a) Bounded model-checking: The thick black line, in
Fig. 5, shows the analysis time while varying the exploration
bound in a BMC configuration using a set for the known
representation. Please note that when the bound reaches the
diameter (16 in our case) this analysis is exhaustive. The
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Fig. 6. State-space coverage in while varying the bloom filter size.

results show that even though BMC re-explores nodes, for
smaller diameters it can be faster than the unbounded analysis
(the black line intersects the red one at the bound=9 in
the figure). When the analysis proceeds to the reachability
diameter BMC is 5.5 times slower in our experiment.

b) Bitstate Hashing: The thick dotted line, in Fig. 5,
reports the execution time for the bitstate hashing algorithm
while varying the address width of the bloom filter from 1 to
19. While this configuration divides the memory requirements
by a factor proportional to the configuration width, it looses
the exhaustivity. On the other hand we can observe that this
partial analysis is faster than BMC, and reaches a similar
runtime to BFS when the bloom filter is large enough. In this
case the state-space coverage is improved, illustrated in Fig. 6,
reaching 98% (0.98 in the figure) for a bloom filter with 220

bits. Please note that the coverage can greatly be improved by
using multiple hash-functions [27].

c) Hybrid – BMC & Bitstate Hashing: The thin black
line, in Fig. 5, shows the execution time in a hybrid setting
that combines BMC with bitstate hashing. In this case the
bloomfilter size was fixes to 212 bits and the bound was varied
again between 1 and 19. In this case we can observe that
the analysis almost matches the exhaustive BFS execution
time when the bound approaches the reachability diameter.
However, the state-space coverage is much smaller due to the
insufficient size of the bloom filter.

The thin dotted line, in Fig. 5, illustrates the result in a
similar hybrid configuration that fixes the bound of BMC at
the diameter and varies the bloom filter size. It is not surprising
that in this case, the analysis time follows the trend of the
bitstate-hashing configuration (shown by the dotted thick line).
What is interesting to note though, is that, in practice, these
two hybrid configurations enable tuning the memory pressure
and the analysis time for non-exhaustive analysis (ie. testing).

Table I shows the resources’ utilisation on the FPGA for
the Menhir core. The first line illustrates the resources needed
for the exhaustive BFS analysis discussed in Fig. 4. The
second line shows the resources needed for the bitstate hashing
configuration. A noticeable point is the reduced number of
BRAM cells being used, since a bloom filter needs to store
only a bit per state. The third line (SoC bridge) shows the
resources needed by the AXI interface to connect the Menhir
core with the ARM processor on the Zynq platform.

These results mainly emphasize the high flexibility of our
proposal. Menhir can be configured on demand to conform
to many configurations. This study focused on establishing an
open and extensible verification core architecture. As a conse-
quence, the results are rather pessimistic, since we chose not



TABLE I
FPGA RESOURCE UTILISATION

LUTs FFs DSPs BRAM
Menhir core (Set) 951 741 13 130

Menhir core (Bloom Filter) 656 439 13 68
SoC bridge 881 1159 0 0

to exploit any optimisation opportunity (besides the pipelined
architecture). Still, a preliminary study on accelerating the
hash function (needed for the Known) shows an order of
magnitude increase, making our results in-lined with the
literature [12], [14].

V. CONCLUSION

Menhir is new highly modular hardware model-checker, in-
spired by the architecture of software verification frameworks.
Menhir demonstrates up to 50X speedup vs software baseline.
Compared to other hardware implementations found in the
literature, Menhir decouples the model from the verification
core. As a result, Menhir is compatible with many modelling
formalisms and supports algorithmic customization, making
it a perfect candidate to implement just-fit solutions. Based
on the methodical approach proposed in this study, future
evolutions will focus on optimizing key components of the
framework to improve the performances. Furthermore, we plan
to extend the core to ω-regular model-checking algorithms.
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and G. Salaün, Eds. Cham: Springer International Publishing, 2019,
pp. 532–548.

[8] S. Apel, D. Beyer, V. Mordan, V. Mutilin, and A. Stahlbauer, “On-
the-fly decomposition of specifications in software model checking,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2016. New York,
NY, USA: Association for Computing Machinery, 2016, p. 349–361.
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